Issue II: Inductive Types

Maksym Sokhatskyi !

! National Technical University of Ukraine
Igor Sikorsky Kyiv Polytechnical Institute
April 27, 2025

Abstract
Impredicative Encoding of Inductive Types in HoTT.
Keywords: Formal Methods, Type Theory, Programming Languages,

Theoretical Computer Science, Applied Mathematics, Cubical Type The-
ory, Martin-Lof Type Theory

Contents

1 Inductive Encodings
1.1 Church Encoding o
1.2 Scott Encoding oo
1.3 Parigot Encoding o
1.4 CPS Encoding
1.5 Interaction Networks Encoding
1.6 Impredicative Encoding
1.7 Lambek Encoding: Homotopy Initial Algebras.

2 Inductive Types
21 W e
2.2 M
2.3 Empty
2.4 Unit e e
2.5 Bool e
26 Maybe
2.7 Either
2.8 Nat.
2.9 List e
2.10 Vector
211 Streamo
2.12 Interpreter L

WRNNDNDNNDNDDN

OO0 CO CO 00 00 00 00 00 ~1 O U = I~

1 Inductive Encodings

1.1 Church Encoding

You know Church encoding which also has its dependent alanolgue in CoC,
however in Coq it is imposible to detive Inductive Principle as type system lacks
fixpoint and functional extensionality. The example of working compiler of PTS
languages are Om and Morte. Assume we have Church encoded NAT:

nat = (X:U) —) (X —) X) —) X —) X

where first parameter (X — > X) is a suce, the second parameter X is zero,
and the result of encoding is landed in X. Even if we encode the parameter
list (A: U) = (X:U) —) X =) (A) X)) X

and paremeter A let’s say live in 42 universe and X live in 2 universe, then
by the signature of encoding the term will be landed in X, thus 2 universe.
In other words such dependency is called impredicative displaying that landed
term is not a predicate over parameters. This means that Church encoding

is incompatible with predicative type checkers with predicative of predicative-
cumulative hierarchies.

1.2 Scott Encoding

1.3 Parigot Encoding

1.4 CPS Encoding

1.5 Interaction Networks Encoding

1.6 Impredicative Encoding

In HoTT n-types is encoded as n-groupoids, thus we need to add a predicate
in which n-type we would like to land the encoding:
NAT (A: U) = (X:U) —) isSet X —) X) (A —) X)) X

Here we added isSet predicate. With this motto we can implement propo-

sitional truncation by landing term in isProp or even HIT by langing in is-
Groupoid:

TRUN (A U) type = (X: U) —) isProp X —) (A —) X) —) X

S1 = (X:U) —) 1sGroup01d X =) ((x:X) —) Path X x x) —) X

MONOPLE (A:U) = (X:U) —) isSet X —) (A —) X) —) X

NAT — (X:U) =) isSet X —) X —) (A —) X) —) X

The main publication on this topic could be found at [2] and [1].

The Unit Example

Here we have the implementation of Unit impredicative encoding in HoTT.

upPath XY:U)(f:X9)Y)(a:X)X): X =) Y=0XXY f a
downPath (X Y:U) (f:X)Y)(b:Y)Y): X) Y=0XYYb f
naturality (X Y:U) (f:X-)Y) (a:X—)X)(b:Y-)Y): U

= Path (X-)Y) (upPath XY f a)(downPath XY f b)

unitEnc’: U= (X: U) —) isSet X —) X —) X
isUnitEnc (one: unitEnc’): U
= (X Y:U)(x:isSet X)(y:isSet Y)(f:X-)Y) —)
naturality XY f (one X x)(one Y y)

unitEnc: U = (x: unitEnc’) * isUnitEnc x
unitEncStar: unitEnc = (\(X:U)(_:isSet X) —)
idfun X,\ (X Y: U)(-:isSet X)(-:isSet Y)—)refl (X-)Y))
unitEncRec (C: U) (s: isSet C) (c¢: C): unitEnc —) C
= \(z: unitEnc) —) z.1 C s ¢
unitEncBeta (C: U) (s: isSet C) (c: C)

Path C (unitEncRec C s ¢ unitEncStar) ¢ = refl C ¢
unitEncEta (z: unitEnc): Path unitEnc unitEncStar z = undefined
unitEncInd (P: unitEnc —) U) (a: unitEnc): P unitEncStar —) P a

= subst unitEnc P unitEncStar a (unitEncEta a)
unitEncCondition (n: unitEnc’): isProp (isUnitEnc n)
= \ (f g: isUnitEnc n) —)
(h) \ (x y: U) =) \ (X: isSet x) —) \ (Y: isSet y)
: \ (R: %) o) Y (F (nx XR)) (
J

nyY (FR))
j R) ((j) gxyXYF@jR)@hai

1.7 Lambek Encoding: Homotopy Initial Algebras

2 Inductive Types
21 W

Well-founded trees without mutual recursion represented as W-types.
Definition 1. (W-Formation). For A: U and B : A — U, type W is defined as
W(A,B) :U or

W(x;A)B(:c) ‘U.

def W (A :U) (B: A=U) : U :=W (x : A), Bx

Definition 2. (W-Introduction). Elements of W,.4)B(z) are called well-
founded trees and created with single sup constructor:

sup : W, 4)B(x).

def sup$’$ (A: U) (B: A—=U) (x: A) (f: Bx —->W A B)
:' W AB
;= sup AB x f

Theorem 1. (Induction Principle indw). The induction principle states that
for any types A : Y and B : A — U and type family C over W(A, B) and the
function g : G, where

¢=]1 11 I c(re)sc(sup(a, £))

@A f:B(x)BW(A,B) b:B(z)

there is a dependent function:

mdw: J[O IIIT I 1 et

C:W(A,B)8U g:G a:A f:B(a)BW(A,B) b:B(a)

def W-ind (A : U) (B : A= 1)
(C: W(x : A), Bx)—=0)
(g : II (x : A) (f:B)(—)(VV(X:A),BX))7
(IT (b : Bx), C(fb)) —>C (sup ABx f))
(a : A) (f : Ba— W (x : A), Bx)) (b : B a)
:C (fb) :=ind"ABCg (fb)

Theorem 2. (indw Computes). The induction principle ind"V satisfies the
equation:
indw-5 : g(a, f, \b.ind" (g, (b))
=def 1de(g, SUP(a> f))

def ind¥-8 (A : U) (B : A—=1)

(C: Wi(x : A), Bx) =U) (g : II (x : A)
(f : Bx—=> W(x : A), Bx)), (IT(b:Bx), C(fb))—=>C(sup ABx [))
(a : A) (f:Ba%(VV(X:/)X),Bx))

: PathP ((-) C (sup A B a f)

(indV ABC g (sup AB a f))

(gaf (MN(b:Ba), indV ABCg (fDb)))
=()Ygaf (A(b:Ba), indVABCg (fb))

2.2

2.3 Empty

The Empty type represents False-type logical 0, type without inhabitants,
void or L (Bottom). As it has not inhabitants it lacks both constructors and
eliminators, however, it has induction.

Definition 3. (Formation). Empty-type is defined as built-in O-type:
0:U.

Theorem 3. (Induction Principle indp). O0-type is satisfying the induction

principle:
indy : H H C(z).

C:0—->Uz:0

def Empty—ind (C: 0 - U) (z: 0) : C z := indg (C z) z

Definition 4. (Negation or isEmpty). For any type A negation of A is defined
as arrow from A to 0:
-A:=A—0.

def isEmpty (A: U): U :=A—=0

The witness of = A is obtained by assuming A and deriving a contradiction.
This techniques is called proof of negation and is applicable to any types in
constrast to proof by contradiction which implies =——A — A (double negation
elimination) and is applicable only to decidable types with —A 4+ A property.

2.4 Unit

Unit type is the simplest type equipped with full set of MLTT inference
rules. It contains single inhabitant % (star).

2.5 Bool

2.6 Maybe
2.7 [Either
2.8 Nat

2.9 List

2.10 Vector
2.11 Stream

2.12 Interpreter

References

[1]

[2]

Sam Speight, Impredicative Encoding of Inductive Types in HoTT, 2017.
https://github.com/sspeight93/Papers/

Steve Awodey, Impredicative Encodings in HoTT, 2017. https://wuw.
newton.ac.uk/files/seminar/20170711090010001-1009680.pdf

Frank Pfenning and Christine Paulin-Mohring, Inductively Defined Types
in the Calculus of Constructions, in Proc. 5th Int. Conf. Mathe-
matical Foundations of Programming Semantics, 1989, pp. 209-228.
doi:10.1007/BFb0040259

Peter Dybjer, Inductive Families, in Formal Aspects of Computing, pp.
440-465, 1994. doi:10.1016/S0049-237X(08)71945-1

