
Addendum II: Many Faces of Equality

Maksym Sokhatskyi 1

1 National Technical University of Ukraine
Igor Sikorsky Kyiv Polytechnical Institute

September 25, 2018

Abstract

This paper represents the very small part of the developed base library
for homotopical prover based on Cubical Type Theory (CTT) announced
in 2017. We demonstrate the usage of this library by showing how to
build a constructive proof of heterogeneous equality, the simple and ele-
gant formulation of the equality problem, that was impossible to achieve
in pure Martin-Löf Type Theory (MLTT). The machinery used in this ar-
ticle unveils the internal aspect of path equalities and isomorphism, used
e.g. for proving univalence axiom, that became possible only in CTT. As
an example of complex proof that was impossible to construct in earlier
theories we took isomorphism between Nat and Fix Maybe datatypes and
built a constructive proof of equality between elements of these datatypes.
This approach could be extended to any complex isomorphic data types.

Keywords: Equivalence, Isomorphism, Homotopy, Heterogeneous Equality,
Cubical Type Theory, Martin-Löf Type Theory

1 Intro

After formulating Type Theory to model quantifiers using Pi and Sigma types
in 1972 [5] Per Martin-Löf added Equ equality types in 1984 [6]. Later Equ types
were extended to non-trivial structural higher equalities (∞-groupoid model) as
was shown by Martin Hofmann and Thomas Streicher in 1996 [4]. However
formal constructing of Equ type eliminators was made possible only after in-
troducing Cubical Type Theory in 2017 [3]. CTT extends MLTT with interval
I = [0, 1] and its de Morgan algebra: 0, 1, r,−r,min(r, s),max(r, s) allowing
constructive proofs of earlier models based on groupoid interpretation.

The problem and tools used. In this paper, we want to present the
constructive formulation of proof that two values of different types are equal
using constructive heterogeneous equality in Cubical Type Checker [3] 1. In the
end, we will use path isomorphism for that purposes [7].

1https://github.com/mortberg/cubicaltt

1

Author’s contribution. During the story of comparing two zeros, we will
show the minimal set of primitives needed for performing this task in the cubical
type checker. Most of them were impossible to derive in pure MLTT. We show
these primitives in dependency order while constructing our proof. This article
covers different topics in type theory, which is the main motivation to show
how powerful the notion of equality is: 1) Contractability and n-Groupoids;
2) Constructive J; 3) Functional Extensionality; 4) Fibers and Equivalence; 5)
Isomorphism; 6) Heterogeneous equality.

1.1 Research Formal Description

As a formal description of the research includes all cubical programs as research
object, type theory ingenral and MLTT and CTT inparticular as research sub-
ject, direct proof construction as logical method and encoded cubical base library
and examples as research results.

Research object. The homotopy type theory base libraries in Agda, Cu-
bical, Lean and Coq. While modern Agda has the cubical mode, Coq lacks of
the computational semantics of path primitives while has HoTT library. The
real programming language is not enough to develop the software and theorems,
the language shoud be shipped with base library. In this article we unvail the
practical implementation of base library for cubical typecheckers.

Research subject. We will analyze the base library through the needs of
particular features, like basic theorems, heterogeneous path equalities, univa-
lence, basic HITs like truncations, run-time versions of the list, nat, and stream
datatypes. We use Martin-Löf Type Theory as a subject and its extention CTT.
The main motivation is to have small and concise base library for cubicaltt type
checker than can be used in more complex proofs. As an example of library us-
age we will show the general sketch of the constructive proofs of heterogeneous
equality in CTT, concentrating only on homotopical features of CTT.

Research results. Research result is presented as source code repository
that can be used by cubicaltt 2 language and contains the minimal base library
used in this article. These primitives form a valuable part of base library, so
this arcticle could be considered as an brief introduction to several modules:
proto path, proto equiv, pi, sigma, mltt, path, iso. But the library has
even more modules, that exceed the scope of this article so you may refer to
source code repository3. Brief list of base library modules is given in Conclusion.

Research methods. The formal definition of MLTT theory and construc-
tive implementation of its instance that supplied with minimal but compre-
hensive base library that can be used for verifying homotopical and run-time
models. The type theory itself is a modeling language, logical framework and
research method. The MLTT is a particular type theory with Universes, Π,
Σ and Equ types. This is common denominator for a series of provers based
on MLTT such as Coq, Agda, Cubicaltt. In the article we will use Cubical
language.

2http://github.com/mortberg/cubicaltt
3http://github.com/groupoid/infinity

2

2 MLTT Type Theory

MLTT is considered as contemporary common math modeling language for dif-
ferent parts of mathematics. Thanks to Vladimir Voevodsky this was extended
to Homotopy Theory using MLTT-based Coq proof assistant 4. Also he formu-
lated the univalence principle Iso(A,B) = (A = B) [7], however constructive
proof that isomorphism equals to equality and equivalences is possible only in
Cubical Type Theory [3] (Agda and Cubical type checkers).

In this section we will briefly discribe the basic notion of MLTT, then will
give a formal description of MLTT and the informal primitives of CTT. Only
after that will start the proof of heterogeneous equality ended up with proofterm.
MLTT consist of Π, Σ and Equ types living in a Hierarchy of universes Ui : Ui+1.
We will also give an extended equality HeteroEqu which is needed for our proof.

2.1 Syntax Notes

Types are the analogues of sets in ZFC, or objects in topos theory, or spaces
in analisys. Types contains elements, or points, or inhabitans and it’s denoted
a : A and there is definitional equality which usually built into type checker and
compare normal forms.

a : A (terms and types)

x = [y : A] (definitional equality)

MLTT type theory with Pi and Sigma types was formulated using natural
deduction inference rules as a language. The inference rules in that language
will be translated to cubicaltt in our article.

(A : Ui) (B : A→ Uj)

(x : A)→ B(x) : Umax(i,j)
(natural deduction)

Equvalent definition in cubicaltt (which is inconstend U : U but this won’t affect
correctness of our proof). Here we consider Π and Pi synonimically identical.

Pi (A : U) (B : A→ U) : U = (x : A)→ B(x) (cubicaltt)

In article we will use the latter notation, the cubical syntax. The function
name in cubical syntax is an inference rule name, everything from name to
semicolon is context conditions, and after semicolon is a new consruction derived
from context conditions. From semicolon to equality sign we have type and after
equ sign we have the term of that type. If the types are treated as spaces then
terms are points in these spaces.

According to MLTT each type has 4 sorts of inference rules: Formation,
Introduction, Eliminators and Computational rules. Formation rules are formal

4http://github.com/UniMath

3

definition of spaces while introduction rules are methods how to create points
in these spaces. Introduction rules increase term size, while eliminators reduce
term size. Computational rules always formulated as equations that represents
reduction rules, or operational semantics.

2.2 Pi types

Pi types represent spaces of dependent functions. With Pi type we have one
lambda constructor and one application eliminator. When B is not dependent
on x : A the Pi is just a non-dependent total function A → B. Pi has one
lambda function constructor, and its eliminator, the application [7, 5, 6, 4, 3, 2].

Pi(A,B) =
∏
x:A

B(x) : U, λx.b :
∏
x:A

B(x)

∏
f :
∏

x:A B(x)

∏
a:A

fa : B(a)

Here we formulate the math formula of Pi and its eliminators in cubical
syntax as Pi. Note that backslash ”\” in cubical syntax means λ function from
math notation and has compatible lambda signature.

Pi (A:U) (B:A−>U) : U = (x :A)−>B(x)
lambda (A:U) (B:A−>U) (a :A) (b :B(a)) : A−>B(a) = \ (x :A)−>b
app (A:U) (B:A−>U) (a :A) (f :A−>B(a)) : B(a) = f (a)

2.3 Sigma types

Sigma types represents a dependent cartesian products. With sigma type we
have pair constructor and two eliminators, its first and second projections.
When B is not dependent on x : A the Sigma is just a non-dependent product
A × B. Sigma has one pair constructor and two eliminators, its projections
[7, 5, 6, 4, 3, 2].

Sigma(A,B) =
∑
x:A

B(x) : U, (a, b) :
∑
x:A

B(x)

π1 :
∏

f :
∑

x:A B(x)

A , π2 :
∏

f :
∑

x:A B(x)

B(π1(f))

As Pi and Sigma are dual the Sigma type could be formulated in terms
of Pi type using Church encoding, thus Sigma is optional. The type systems
which contains only Pi types called Pure or PTS. Here we rewrite the math
formula of Sigma and its eliminators in cubical syntax as Sigma:

Sigma (A:U) (B:A−>U) : U = (x :A) ∗ B(x)
pa i r (A:U) (B:A−>U) (a : A) (b : B(a)) : Sigma A B = (a , b)
pr1 (A:U) (B:A−>U) (x : Sigma A B) : A = x .1
pr2 (A:U) (B:A−>U) (x : Sigma A B) : B (pr1 A B x) = x . 2

4

2.4 Equ types

For modeling propositional equality later in 1984 was introduced Equ type. [6]
However unlike Pi and Sigma the eliminator J of Equ type is not derivable in
MLTT [4, 3, 7].

Equ(x, y) =
∏
x,y:A

x =A y : U, reflect :
∏
a:A

a =A a

D :

A:Ui∏
x,y:A

x =A y → Ui+1, J :
∏
C:D

∏
x:A

C(x, x, reflect(x))→
∏
y:A

∏
p:x=Ay

C(x, y, p)

Eliminator of Equality has complex form and underivable in MLTT. Here
we can see the formulation of Equ in cubical syntax as Equ:

Equ (A: U) (x y : A) : U = undef ined
r e f l e c t (A: U) (a : A) : Equ A a a = undef ined
D (A: U) : U = (x y : A) −> Equ A x y −> U
J (A: U) (x y : A) (C: D A) (d : C x x (r e f l e c t A x))

(p : Equ A x y) : C x y p = undef ined

Starting from MLTT until cubicaltt there was no computational semantics
for J rules and in Agda and Coq it was formulated using inductive data types
wrapper around built-in primitives (J) in the core:

data Equal i ty (A:U) (x y :A) = r e f l (: Equ A x z)
r e f l e c t i o n (A:U) (a :A) : Equal i ty A a a = r e f l (r e f l e c t A a)

Heterogeneous equality is needed for computational rule of Equ type. And
also this is crucial to our main task, constructive comparison of two values of
different types. We leave the definition blank until introdure cubical primitives,
here is just MLTT signature of HeteroEqu which is undervable in MLTT.

HeteroEqu (A B:U) (a :A) (b :B) (P: Equ U A B) :U = undef ined

E.g. we can define Setoid specification [1] as not-MLTT basis for equality
types. These signatures are also underivable in MLTT.

symm :
∏
a,b:A

∏
p:a=Ab

b =A a, transitivity :
∏

a,b,c:A

∏
p:a=Ab

∏
q:b=Ac

a =A c

sym (A:U) (a b :A) (p : Equ A a b) : Equ A b a = undef ined
t r a n s i t i v i t y (A:U) (a b c :A) (p : Equ A a b) (q : Equ A b c) :

Equ A a c = undef ined

5

3 Preliminaries

3.1 Cubical Type Theory Primitives and Syntax

The path equality is modeled as an interval [0,1] with its de Morgan algebra 0,
1, r, min(r,s), max(r,s). According to underlying theory it has lambdas, applica-
tion, composition and gluening of [0,1] interval and Min and Max functions over
interval arguments. This is enought to formulate and prove path isomorphism
and heterogeneous equality.

Heterogeneous Path. The HeteroPath formation rule defines a heteroge-
nous path between elements of two types A and B for which Path exists A =
B.

Abstraction over [0,1]. Path lambda abstraction is a function which is
defined on [0, 1]: f : [0, 1]→ A. Path lambda abstraction is an element of Path
type.

Min, Max and Invert. In the body of lambda abstraction besides path
application de Morgan operation also could be used: i ∧ j, i ∨ j, i, −i and
constants 0 and 1.

Application of path to element of [0,1]. When path lambda is de-
fined, the path term in the body of the function could be reduced using lambda
parameter applied to path term.

Path composition. The composition operation states that being extensible
is preserved along paths: if a path is extensible at 0, then it is extensible at 1.

Path gluening. The path gluening is an operation that allows to build
path from equivalences. CTT distinguishes types gluening, value gluening and
ungluening.

Here we give LALR specification of BNF notation of Cubicat Syntax as
implemented in our github repository 5. It has only 5 keywords: data, split,
where, module, and import.

de f := data id t e l e = sum + id t e l e : exp = exp +
id t e l e : exp where de f

exp := c o t e l e ∗exp + co t e l e→exp + exp→exp + (exp) + app + id +
(exp , exp) + \ c o t e l e→exp + split cobrs + exp.1 + exp.2

0 := #empty imp := [import id]
brs := 0 + cobrs t e l e := 0 + co t e l e
app := exp exp c o t e l e := (exp : exp) t e l e
id := [#nat] sum := 0 + id t e l e + id t e l e | sum

id s := [id] br := id s → exp
cod := de f dec mod := module id where imp de f
dec := 0 + codec cobrs := | br brs

3.2 Contractability and Higher Equalities

A type A is contractible, or a singleton, if there is a : A, called the center of
contraction, such that a = x for all x : A: A type A is proposition if any x,y:

5http://github.com/groupoid/infinity/

6

A are equals. A type is a Set if all equalities in A form a prop. It is defined as
recursive definition.

isContr =
∑
a:A

∏
x:A

a =A x, isProp(A) =
∏
x,y:A

x =A y, isSet =
∏
x,y:A

isProp (x =A y),

isGroupoid =
∏
x,y:A

isSet (x =A y), PROP =
∑
X:U

isProp(X), SET =
∑
X:U

isSet(X), ...

The following types are inhabited: isSet PROP, isGroupoid SET. All these
functions are defined in path module. As you can see from definition there is a
recurrent pattern which we encode in cubical syntax as follows:

data N = Z | S (n : N)
n grpd (A: U) (n : N) : U = (a b : A) −> ((r e c A a b) n) where

r ec (A: U) (a b : A) : (k : N) −> U = split
Z −> Path A a b
S n −> n grpd (Path A a b) n

i sContr (A: U) : U = (x :A) ∗ ((y : A) −> Equ A x y)
isProp (A: U) : U = n grpd A Z
i s S e t (A: U) : U = n grpd A (S Z)
isGroupoid (A: U) : U = n grpd A (S (S Z))
PROP : U = (X:U) ∗ i sProp X
SET : U = (X:U) ∗ i s S e t X
GRPOUPOID : U = (X:U) ∗ i sGroupoid X

3.3 Constructive J

The very basic ground of type checker is heterogeneous equality PathP and
contructive implementation of reflection rule as lambda over interval [0, 1] that
return constant value a on all domain.

Path (A:U) (a b :A) :U = PathP (< i>A) a b
HeteroEqu (A B:U) (a :A) (b :B) (P: Equ U A B) :U = Path P a b
r e f l (A:U) (a :A) : Path A a a = <i> a
sym (A:U) (a b :A) (p : Path A a b) : Path A b a = <i> p @ − i
t r a n s i t i v i t y (A: U) (a b c :A) (p : Path A a b) (q : Path A b c) :

Path A a c = comp (< i> Path A a (q @ i)) p []

trans :

A,B:U∏
p:A=UB

∏
a:A

B, singleton :

A:U∏
x:A

∑
y:A

x =A y

subst :

A:U,B:A→U∏
a,b:A

∏
p:a=Ab

∏
e:B(a)

B(b), congruence :

A,B:U∏
f :A→B

∏
a,b:A

∏
p:a=Ab

f(a) =B f(b)

7

Transport tranfers the element of type to another by given path equality of
the types. Substitution is like transport but for dependent functions values: by
given dependent function and path equality of points in the function domain
we can replace the value of dependent function in one point with value in the
second point. Congruence states that for a given function and for any two points
in the function domain, that are connected, we can state that function values
in that points are equal.

s i n g l (A:U) (a :A) : U = (x : A) ∗ Path A a x
trans (A B:U) (p : Path U A B) (a : A) : B = comp p a []
congruence (A B: U) (f :A−>B) (a b : A)

(p : Path A a b) : Path B (f a) (f b)
= <i> f (p @ i)

subst (A:U) (P:A−>U) (a b : A)
(p : Path A a b) (e : P a) : P b
= trans (P a) (P b) (congruence A U P a b p) e

con t rS i ng l (A : U) (a b : A) (p : Path A a b) :
Path (s i n g l A a) (a , r e f l A a) (b , p)
= <i> (p @ i , <j> p @ i /\ j)

Then we can derive J using contrSingl and subst as defined in HoTT[7]:

J (A:U) (x y :A) (C: D A) (d :C x x (r e f l A x))
(p : Path A x y) : C x y p =

subst (s i n g l A x) T (x , r e f l A x)
(y , p) (c on t rS i ng l A x y p) d where

T (z : s i n g l A x) :U = C (z . 1) (z . 2)

These function are defined in proto path module, and all of them except
singleton definition are underivable in MLTT.

3.4 Functional Extensionality

Function extensionality is another example of underivable theorems in MLTT, it
states if two functions with the same type and they always equals for any point
from domain, we can prove that these function are equal. funExt as functional
property is placed in pi module.

funExt :

A:U,B:A→U∏
[f,g:(x:A)→B(x)]

∏
[x:A,p:A→f(x)=B(x)g(x)]

f =A→B(x) g

funExt (A: U) (B: A−>U)
(f g : (x :A)−>B(x))
(p : (x :A)−>Path (B x) (f x) (g x)) :
Path ((y :A)−>B y) f g=<i >\(a :A)−>(p a)@i

8

3.5 Fibers and Equivalence

The fiber of a map f : A→ B over a point y : B is family over x of Sigma pair
containing the point x and proof that f(x) =B y.

fiber :

A,B:U∏
f :A−>B

∏
x:A,y:B

∑
f(x) =B y, isEquiv :

A,B:U∏
f :A−>B

∏
y:B

isContr(fiber(f, y))

equiv :

A,B:U∑
f :A−>B

isEquiv(f) pathToEquiv :

X,Y :U∏
p:X=UY

equivU (X,Y)

.
Contractability of fibers called isEquiv predicate. The Sigma pair of a

function and that predicate called equivalence, or equiv. Now we can prove
that singletons are contractible and write a conversion function X =U Y →
equiv(X,Y).

f i b e r (A B:U) (f :A−>B) (y :B) :U = (x :A) ∗ Path B y (f x)
i sEquiv (A B:U) (f :A−>B) :U = (y :B) −> i sContr (f i b e r A B f y)
equiv (A B:U) :U = (f :A−>B) ∗ i sEquiv A B f

s i n g l e t o n I sCon t r a c t i b l e (A:U) (a :A) : i sContr (s i n g l A a)
= ((a , r e f l A a) , \ (z : (x :A) ∗ Path A a x) −>
con t rS i ng l A a z . 1 z . 2)

pathToEquiv (A X: U) (p : Path U X A) : equiv X A
= subst U (equiv A) A X p (idEquiv A)

equiv type is compatible with cubicaltt typechecker and it instance can be
passed as parameter for Glue operation. So all equiv functions and properties
is placed in separate equiv module.

3.6 Isomorphism

The general idea to build path between values of different type is first to build
isomorphism between types, defined as decode and encode functions (f and g),
such that f ◦ g = idA, g ◦ f = idB .

Iso(A,B) =
∑

[f :A→B]

∑
[g:B→A]

(∏
x:A

[g(f(x)) =A x]×
∏
y:B

[f(g(y) =B y]

)

isoToEquiv(A,B) : Iso(A,B)→ Equiv(A,B)

isoToPath(A,B) : Iso(A,B)→ A =U B

lemIso proof is a bit longread, you may refer to Github repository6. The
by proof of isoToEquiv using lemIso we define isoToPath as Glue of A and B

6http://github.com/groupoid/infinity/tree/master/priv/iso.ctt

9

types, providing equiv(A,B). Glue operation first appear in proving transprt
values of different type across their path equalities which are being constructed
using encode and decode functions that represent isomorphism. Also Glue op-
eration appears in constructive implementation of Univalence axiom[3].

l emIso (A B:U) (f : A−>B) (g :B−>A)
(s : (y :B) −> Path B (f (g (y))) y)
(t : (x :A) −> Path A (g (f (x))) x) (y :B) (x0 x1 :A)
(p0 : Path B y (f (x0))) (p1 : Path B y (f (x1))) :
Path (f i b e r A B f y) (x0 , p0) (x1 , p1) = undef ined

isoToEquiv (A B: U) (f :A−>B) (g :B−>A)
(s : (y :B) −> Path B (f (g (y))) y)
(t : (x :A) −> Path A (g (f (x))) x) : i sEquiv A B f =

\(y :B) −> ((g y,< i>s y@−i) ,\ (z : f i b e r A B f y) −>
l emIso A B f g s t y (g y) z . 1 (< i>s y@−i) z . 2)

isoToPath (A B:U) (f :A−>B) (g :B−>A)
(s : (y :B) −> Path B (f (g (y))) y)
(t : (x :A) −> Path A (g (f (x))) x) : Path U A B =
<i> Glue B [(i=0)−>(A, f , isoToEquiv A B f g s t) ,

(i=1)−>(B, id fun B, id I sEqu iv B)]

Isomorphism definitions are placed in three different modules due to depen-
dency optimisation: iso, iso pi, iso sigma. Latter two contains main theorems
about paths in Pi and Sigma spaces.

4 The Formal Specification of the Problem

4.1 Class of Theorems. Constructive proofs of heteroge-
neous equalities

Speaking of core features of CTT that were unavailable in MLTT is a notion
of heterogeneous equality that was several attempts to construct heterogeneous
equalities: such as John-Major Equality 7 by Connor McBride (which is in-
cluded in Coq base library). As an example of library usage we will show the
general sketch of the constructive proofs of heterogeneous equality in CTT,
concentrating only on homotopical features of CTT.

Let us have two types A and B. And we have some theorems proved for
A and functions f : A → B and g : B → A such that f ◦ g = idA and
g ◦ f = idB . Then we can prove Iso(A,B) → Equ(A,B). The result values
would be proof that elements of A and B are equal — HeteroEqu. We will
go from the primitives to the final proof. As an example we took Nat and Fix
Maybe datatype and will prove Iso(Nat, F ix(Maybe)). And then we prove the
HeteroEqu(Nat, F ix(Maybe)).

7https://homotopytypetheory.org/2012/11/21/on-heterogeneous-equality/

10

4.2 Problem Example. Nat = Fix Maybe

Now we can prove Iso(Nat, F ix(Maybe)) and Nat =U Fix(Maybe). First we
need to introduce datatypes Nat, F ix,Maybe and then write encode and decode
functions to build up an isomorphism. Then by using conversion from Iso to
Path we get the heterogeneous equality of values in Nat and Fix(Maybe). We
can build transport between any isomorphic data types by providing ecode and
decode functions.

data f i x (F :U−>U) = Fix (po int : F (f i x F))
data nat = zero | suc (n : nat)
data maybe (A:U) = nothing | j u s t (a : A)

natToMaybe : nat −> f i x maybe = s p l i t
ze ro −> Fix nothing
suc n −> Fix (j u s t (natToMaybe n))

maybeToNat : f i x maybe −> nat = s p l i t
Fix m −> s p l i t nothing −> zero

j u s t f −> suc (maybeToNat f)

natMaybeIso : (a : nat) −>
Path nat (maybeToNat (natToMaybe a)) a = s p l i t

ze ro −> <i> zero
suc n −> <i> suc (natMaybeIso n @ i)

maybeNatIso : (a : f i x maybe) −>
Path (f i x maybe) (natToMaybe (maybeToNat a)) a = s p l i t

Fix m −> s p l i t nothing −> <i> Fix nothing
j u s t f −> <i> Fix (j u s t (maybeNatIso f @ i))

maybenat : Path U (f i x maybe) nat
= isoToPath (f i x maybe) nat

maybeToNat natToMaybe
natMaybeIso maybeNatIso

The result term of equaluty between two zeros of Nat and Fix Maybe is
given by isomorphism.

> HeteroEqu (f i x maybe) nat (Fix nothing) zero maybenat

EVAL: PathP (<!0> Glue nat [(! 0 = 0) −> (f i x (\ (A : U) −>
maybe) , (maybeToNat , (\ (y : B) −> ((g y,< i> (s y) @ − i) ,
\(z : f i b e r A B f y) −> l emIso A B f g s t y (g y) z . 1
(< i> (s y) @ − i) z . 2)) (A = (f i x (\ (A : U) −> maybe)) ,
B = nat , f = maybeToNat , g = natToMaybe , s = natMaybeIso ,
t = maybeNatIso))) , (! 0 = 1) −> (nat , ((\ (a : A) −> a)
(A = nat) , (\ (a : A) −> ((a , r e f l A a) ,\ (z : f i b e r A A
(id fun A) a) −> con t rS i ng l A a z . 1 z . 2)) (A = nat)))])
(Fix nothing) zero

We admit that normalized (expanded) term has the size of one printed page.

11

Inside it contains the encode and decode functions and identity proofs about
their composition. So we can reconstruct everything up to homotopical primi-
tives or replace the isomorphic encoding with arbitrary code.

5 Conclusion

At the moment only two provers that support CTT exists, this is Agda [2] and
Cubical [3]. We developed a base library for cubical type checkers and described
the approach of how to deal with heterogeneous equalities by the example of
proving Nat =U Fix(Maybe).

Homotopical core in the prover is essential for proving math theorems in
geometry, topology, category theory, homotopy theory. But it also useful for
proving with fewer efforts even simple theorems like commutativity of Nat. By
pattern matching on the edges to can specify continuous (homotopical) trans-
formations of types and values across paths.

We propose a general-purpose base library for modeling math systems using
univalent foundations and cubical type checker.

The amount of code needed for Nat =U Fix(Maybe) proof is around 400
LOC in modules.

The further development of base library implies: 1) extending run-time fa-
cilities; 2) making it useful for building long-running systems and processes; 3)
implement the inductive-recursive model for inductive types (development of
lambek module). The main aim is to bring homotopical univalent foundations
for run-time systems and models. Our base library could be used as a first-class
mathematical modeling tool or as a sandbox for developing run-time systems
and proving its properties, followed with code extraction to pure type systems
and/or run-time interpreters.

References

[1] Errett Bishop. Foundations of constructive analysis. McGraw-Hill series in
higher mathematics. McGraw-Hill, 1967.

[2] Ana Bove, Peter Dybjer, and Ulf Norell. A brief overview of agda — a
functional language with dependent types. In Proceedings of the 22-nd In-
ternational Conference on Theorem Proving in Higher Order Logics, pages
73–78. Springer-Verlag, 2009.

[3] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. In
Cubical Type Theory: a constructive interpretation of the univalence axiom,
2017.

[4] Martin Hofmann and Thomas Streicher. The groupoid interpretation of type
theory. In In Venice Festschrift, pages 83–111. Oxford University Press,
1996.

12

[5] P. Martin-Löf and G. Sambin. The Theory of Types. Studies in proof theory.
1972.

[6] P. Martin-Löf and G. Sambin. Intuitionistic type theory. Studies in proof
theory. 1984.

[7] The Univalent Foundations Program. Homotopy Type Theory: Univalent
Foundations of Mathematics. Institute for Advanced Study, 2013.

13

