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Аннотацiя

The formalization of mathematical analysis in proof assistants has
advanced significantly with systems like Lean and Coq, which have mecha-
nized key results in functional analysis, such as Bochner integration, L2

spaces, and the theory of distributions. This article introduces Laurent, a
novel proof assistant built on MLTT-72, a minimal Martin-Löf Type The-
ory with Pi and Sigma types, omitting identity types (e.g., Id, J) in favor
of Prop predicates and truncated Sigma types. Laurent embeds explicit
primitives for calculus, measure theory, and set theory with open sets and
topology directly into its core, complemented by a tactics language inspired
by Lean, Coq, and recent near tactics. Designed to unify classical and
constructive analysis, it targets the mechanization of Laurent Schwartz’s
Théorie des Distributions and Analyse Mathématique alongside Errett
Bishop’s Foundations of Constructive Analysis. We present its foundation-
al constructs and demonstrate its application to theorems in sequences,
Lebesgue integration, L2 spaces, and distributions, arguing that its design
offers an intuitive yet rigorous approach to analysis, appealing to classical
analysts while preserving constructive precision. Laurent emerges as a spe-
cialized tool for computational mathematics, advancing the mechanization
of functional analysis.
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1 Introduction
The mechanization of mathematical theorems has transformed modern math-
ematics, enabling rigorous verification of proofs through computational tools
known as proof assistants. Systems like Lean and Coq have emerged as leaders
in this field, leveraging dependent type theory to formalize a wide range of
mathematical domains.

Despite their successes, Lean and Coq often rely on extensive libraries (e.g.,
Lean’s mathlib or Coq’s Mathematical Components) and general-purpose tac-
tics—such as ring, field, or linearith—that, while effective, can feel detached
from the intuitive reasoning of classical analysis. This gap has inspired the
development of Laurent, a proof assistant tailored for mathematical analysis,
functional analysis, and distribution theory. Laurent integrates explicit primitives
for sets, measures, and calculus into its core, paired with a tactics language akin
to Lean and Coq, augmented by recent innovations like near tactics [1]. This
design aims to reflect the spirit of classical mathematics while enabling construc-
tive theorem-proving, offering a specialized tool for researchers in functional
analysis.

This article outlines Laurent’s architecture and demonstrates its mechaniza-
tion of classical and constructive theorems, drawing on examples from sequences,
Lebesgue integration, and L2 spaces. We target formal mathematics audience
emphasizing computational mathematics and frontier research in functional
analysis.

Laurent := MLTT | CALC
MLTT := Cosmos | Var | Forall | Exists

CALC := Base | Set | Q | Mu | Lim
Cosmos := Prop : U0 : U1

Var := var ident | hole
Forall := ∀ ident E E | λ ident E E | E E
Exists := ∃ ident E E | (E,E) | E.1 | E.2
Base := N | Z | Q | R | C | H | O | Vn

Set := Set | SeqEq | And | Or | Complement | Intersect
| Power | Closure | Cardinal
Q := −/∼ | Quot | LiftQ | IndQ

Mu := mu | Measure | Lebesgue | Bochner
Lim := Seq | Sup | Inf | Limit | Sum | Union

2 Lean and Coq in Functional Analysis
Lean, developed by Leonardo de Moura, is built on a dependent type theory
variant of the Calculus of Inductive Constructions (CIC), with a small inference
kernel and strong automation. Its mathematical library, mathlib, includes for-
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malizations of Lebesgue measure, Bochner integration, and L2 spaces, upporting
proofs up to research-level mathematics. Tactics like norm_num and continuity
automate routine steps, though their generality can obscure domain-specific
insights.

Both systems, while powerful, prioritize generality over domain-specific effi-
ciency [2]. Laurent addresses this by embedding analysis primitives directly into
its core, inspired by recent advancements in near tactics, which enhance proof
search with contextual awareness.

3 The Laurent Theorem Prover
Laurent is designed to mechanize theorems in classical and constructive analysis
with a focus on functional analysis. Its core is built on dependent types—Pi
(functions) and Sigma (pairs)—augmented by explicit primitives for sets, measures,
and calculus operations. Unlike Lean and Coq, where such notions are library-
defined, Laurent’s primitives are native, reducing abstraction overhead and
aligning with classical mathematical notation.

3.1 Basic Constructs and Set Theory
Laurent’s syntax begins with fundamental types: natural numbers (N), integers
(Z), rationals (Q), reals (R), complex numbers (C), quaternions (H), octanions
(O) and n-vectors (Vn) all embedded in the core. Sets are first-class objects,
defined using lambda abstractions. For example:

let set_a : exp =
Set (Lam ("x", Real,

RealIneq (Gt, Var "x", Zero)))

represents the set {x : R | x > 0}. Operations like supremum and infimum are
built-in:

sup{x > 0} = +∞,

inf{x > 0} = 0,

computed via Sup set_a and Inf set_a, reflecting the unbounded and bounded-
below nature of the positive reals.

3.2 Measure Theory and Integration
Measure theory is central to functional analysis, and Laurent embeds Lebesgue
measure as a primitive:

let interval_a_b (a : exp) (b : exp) : exp =
Set (Lam ("x", Real,
And (RealIneq (Lte, a, Var "x"),

RealIneq (Lte, Var "x", b))))
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let lebesgue_measure (a : exp) (b : exp) : exp =
Mu (Real, Power (Set Real), Lam ("A", Set Real,

If (RealIneq (Lte, a, b),
RealOps (Minus, b, a),
Infinity)))

This defines µ([a, b]) = b− a for a ≤ b, otherwise ∞. The Lebesgue integral is
then constructed:

let integral_term : exp =
Lam ("f", Forall ("x", Real, Real), Lam ("a", Real, Lam ("b", Real,

Lebesgue (Var "f", Mu (Real, Power (Set Real), Lam ("A", Set Real,
If (And (RealIneq (Lte, Var "a", Var "b"),

SetEq (Var "A", interval_a_b (Var "a") (Var "b"))),
RealOps (Minus, Var "b", Var "a"), Zero))),

interval_a_b (Var "a") (Var "b")))))

representing
∫
[a,b]

f dµ, with type signature f, a, b : R → R.

3.3 L2 Spaces
The L2 space, critical in functional analysis, is defined as:

let l2_space : exp =
Lam ("f", Forall ("x", Real, Real),

RealIneq (Lt,
Lebesgue (Lam ("x", Real,

RealOps (Pow, RealOps (Abs, App (Var "f", Var "x"), Zero),
RealOps (Plus, One, One))),
lebesgue_measure Zero Infinity, interval_a_b Zero Infinity),

Infinity))

This encodes {f : R → R |
∫∞
0

|f(x)|2 dµ < ∞}, leveraging Laurent’s measure
and integration primitives.

3.4 Sequences and Limits
Laurent mechanizes classical convergence proofs efficiently. Consider the sequence
an = 1

n :

let sequence_a : exp =
Lam ("n", Nat, RealOps (Div, One, NatToReal (Var "n")))

let limit_a : exp =
Limit (Seq sequence_a, Infinity, Zero,

Lam ("ϵ", Real, Lam ("p", RealIneq (Gt, Var "ϵ", Zero),
Pair (RealOps (Div, One, Var "ϵ"),

Lam ("n", Nat, Lam ("q", RealIneq (Gt, Var "n", Var "N"),
RealIneq (Lt, RealOps (Abs,
RealOps (Minus, App (sequence_a, Var "n"), Zero), Zero),

Var "ϵ")))))))
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This proves limn→∞
1
n = 0, with ∀ε > 0, ∃N = 1

ε such that n > N implies∣∣ 1
n

∣∣ < ε.

4 Examples of Theorem Mechanization
Laurent’s design excels in mechanizing foundational theorems across differential
calculus, integral calculus, and functional analysis. Below, we present a selection
of classical results formalized in Laurent, showcasing its explicit primitives and
constructive capabilities.

4.1 Taylor’s Theorem with Remainder
Taylor’s Theorem provides an approximation of a function near a point using its
derivatives. If f : R → R is n-times differentiable at a, then:

f(x) =

n−1∑
k=0

f (k)(a)

k!
(x− a)k +Rn(x),

where Rn(x) = o((x− a)n−1) as x→ a.
In Laurent this encodes the theorem’s structure, with diff_k representing

the k-th derivative and ‘remainder‘ satisfying the little-o condition, verifiable
via Laurent’s limit primitives.

4.2 Fundamental Theorem of Calculus
The Fundamental Theorem of Calculus links differentiation and integration. If f
is continuous on [a, b], then F (x) =

∫ x

a
f(t) dt is differentiable, and F ′(x) = f(x):

Laurent’s ‘Lebesgue‘ primitive and ‘diff‘ operator directly capture the integral
and derivative, aligning with classical intuition.

4.3 Lebesgue Dominated Convergence Theorem
In functional analysis, the Dominated Convergence Theorem ensures integral
convergence under domination. If fn → f almost everywhere, |fn| ≤ g, and∫
g < ∞, then

∫
fn →

∫
f : This leverages Laurent’s sequence and measure

primitives, with ‘Limit‘ automating convergence proofs via near tactics.

4.4 Schwartz Kernel Theorem
For distributions, the Schwartz Kernel Theorem states that every continuous
bilinear form B : D(Rn) × D(Rm) → R is represented by a distribution K ∈
D′(Rn ×Rm) such that B(ϕ, ψ) = ⟨K,ϕ⊗ψ⟩: This uses Sigma types to pair the
kernel K with its defining property, reflecting Laurent’s support for advanced
functional analysis.
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4.5 Banach Space Duality
In Banach spaces, there’s a bijection between closed subspaces of X and X∗ via
annihilators: A 7→ A⊥, B 7→ ⊥B. Laurent formalizes this as:

let bijection_theorem = Π (Set Real, ("X",
If (banach_space (Var "X"),

And (
Π (Set (Var "X"), ("A",

If (closed_subspace (Var "X", Var "A"),
Id (Set (Var "X"), Var "A", pre_annihilator (Var "X",

annihilator (Var "X", Var "A"))), Bool))),
Π (Set (dual_space (Var "X")), ("B",

If (closed_subspace (dual_space (Var "X"), Var "B"),
Id (Set (dual_space (Var "X")), Var "B", annihilator (Var "X",

pre_annihilator (Var "X", Var "B"))), Bool))))), Bool)))

This showcases Laurent’s ability to handle normed spaces and duality, critical in
functional analysis.

4.6 Banach-Steinhaus Theorem
The Banach-Steinhaus Theorem ensures uniform boundedness of operators.

If supα∈A ∥Tαx∥Y < ∞ for all x ∈ X, then there exists M such that
∥Tα∥X→Y ≤M :

This uses Laurent’s norm and operator primitives, with near tactics simplify-
ing boundedness proofs.

4.7 de Rham Theorem
The de Rham Theorem relates differential forms and integrals over loops. For an
open Ω ⊂ Rn and a C1 1-form ω, if

∫
γ
ω = 0 for all loops γ, there exists f such

that ω = df :

let de_rham_theorem =
Π (Nat, ("n",

Π (Set (Vec (n, Real, RealOps RPlus, RealOps RMult)), ("Omega",
Π (one_form Omega n, ("omega",

And (c1_form Omega n (Var "omega"),
And (Π (loop Omega n, ("gamma",

Id (Real, integral (Var "omega", Var "gamma"), zero))),
Σ (zero_form Omega, ("f", And (

Id (one_form Omega n, Var "omega", differential (Var "f")),
Π (Nat, ("m", If (cm_form Omega n (Var "m") (Var "omega"),

cm_form Omega n (Var "m") (Var "f"), Bool)))))))))))))

This demonstrates Laurent’s capacity for topology and differential geometry,
integrating forms and limits.

These examples highlight Laurent’s versatility, from basic calculus to advanced
functional analysis, leveraging its native primitives and tactics for intuitive yet
rigorous mechanization.
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5 Core Tactics of General Proof Assistant
Laurent’s proof assistant leverages a rich tactics language to mechanize theorems
in functional analysis, blending classical intuition with constructive rigor. Unlike
general-purpose systems like Lean and Coq, Laurent’s tactics are tailored to the
domain-specific needs of analysis, incorporating explicit primitives for limits,
measures, and algebraic structures. This section outlines key tactics used in
Laurent, including specialized solvers for rings, fields, and linear arithmetic, and
demonstrates their application to functional analysis proofs.

These tactics form the backbone of proof construction, mirroring Coq’s logical
framework but optimized for Laurent’s syntax.

5.1 Intro
Introduces variables from universal quantifiers. For a goal ∀x : R, P (x), intro x
yields a new goal P (x) with x in the context.

5.2 Elim
Eliminates existential quantifiers or applies induction (not fully implemented in
the current prototype).

5.3 Apply
Applies a lemma or hypothesis to the current goal (pending full implementation).

5.4 Exists
Provides a witness for an existential quantifier. For ∃x : R, P (x), exists 0
substitutes x = 0 into P (x).

5.5 Assumption
Closes a goal if it matches a hypothesis or simplifies to a trivial truth (e.g., 0 < ε
when ε > 0 is in context).

5.6 Auto
Attempts to resolve goals using context hypotheses, ideal for trivial cases.

5.7 Split
Splits conjunctive goals (P ∧Q) into subgoals P and Q.

8



6 Analysis-Specific Tactics of Laurent
For functional analysis, Laurent introduces tactics that exploit its calculus
and measure primitives. These tactics leverage Laurent’s Limit, Lebesgue, and
RealIneq primitives, reducing manual effort in limit and integration proofs
compared to Lean’s library-based approach.

6.1 Limit
Expands limit definitions. For a goal limn→∞ an = L, it generates:

∀ε > 0,∃N : N,∀n > N, |an − L| < ε,

enabling step-by-step convergence proofs. This is crucial for sequences like 1
n → 0.

6.2 Continuity
Unfolds continuity definitions at a point. For a goal continuous_at (f, a), it
generates:

∀ε > 0,∃δ > 0,∀x, |x− a| < δ =⇒ |f(x)− f(a)| < ε,

transforming the target into an ε-δ formulation using Laurent’s RealIneq primi-
tives for inequalities and RealOps for arithmetic operations (e.g., absolute value,
subtraction). This facilitates step-by-step proofs of continuity, such as for the
Fundamental Theorem of Calculus, by exposing the logical structure directly in
the prover’s core, contrasting with Lean’s reliance on library theorems.

6.3 Near
Introduces a neighborhood assumption. Given a goal involving a point a, near
x a adds xnear : R and δx > 0 with |xnear − a| < δx, facilitating local analysis as
in Taylor’s Theorem.

6.4 ApplyLocally
Applies a local property (e.g., from a near assumption) to simplify the goal,
automating steps in proofs like the Schwartz Kernel Theorem.

To handle the algebraic manipulations ubiquitous in functional analysis (e.g.,
norms, integrals), Laurent incorporates solvers inspired by Lean and Coq:

7 Algebraic Solvers
To handle the algebraic manipulations ubiquitous in functional analysis (e.g.,
norms, integrals), Laurent incorporates solvers inspired by Lean and Coq.

Lean’s ring and linarith rely on mathlib, while Coq’s field uses library-
defined fields. Laurent embeds these solvers in its core, alongside analysis tactics,
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reducing dependency on external definitions. This design accelerates proofs in
L2 spaces, Banach duality, and distribution theory, aligning with the needs of a
mathematical audience exploring frontier research in computational analysis.

7.1 Ring
Solves equalities in commutative rings. For example, it verifies:

(f(x) + g(x))2 = f(x)2 + 2f(x)g(x) + g(x)2,

using R’s ring structure. This is implemented via normalization and equality
checking in Laurent’s core.

7.2 Field
Resolves field equalities and inequalities involving division. For

∫∞
0

|f(x)|2 dµ <
∞, field simplifies expressions like:

f(x)2

g(x)2
=

(
f(x)

g(x)

)2

(g(x) ̸= 0),

crucial for quotient manipulations in Banach spaces.

7.3 Big Number Normalization
Automates numerical simplification and equality checking for expressions involv-
ing rational numbers and basic functions. For a goal like 2+3 = 5 or | sin(0)| = 0,
it evaluates:

norm_num : e 7→ r,

where e is an expression (e.g., 2/3+1/2, ln(1)), and r is either a rational number
(via OCaml’s Num library) or an unevaluated symbolic form. It supports operations
including addition, subtraction, multiplication, division, exponentiation, absolute
value, logarithms, and trigonometric functions, approximating transcendental
results to high precision (e.g., 20 decimal places for sin, cos). This tactic is
essential for verifying norm computations, such as ∥f∥22 =

∫
|f(x)|2 dx, by

reducing concrete numerical subgoals in Banach space proofs.

7.4 Inequality Set Predicates
Handles linear arithmetic inequalities. In the Banach-Steinhaus Theorem, it
proves:

∥Tαx∥Y ≤M∥x∥X ,

by resolving linear constraints over R, integrating seamlessly with RealIneq
backed by Z3 SMT solver (morally correct for inequalities).
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8 Discussion and Future Directions
Laurent has built-in primitives for streamline proofs in measure theory, integra-
tion, and L2 spaces, while its tactics language ensures flexibility. Compared to
Lean’s library-heavy approach or Coq’s constructive focus, Laurent balances
classical intuition with formal precision, making it accessible to analysts ac-
customed to paper-based reasoning. Future work includes expanding Laurent’s
tactics repertoire, formalizing advanced theorems (e.g., dominated convergence,
distribution theory).

Hosted at 1, Laurent invites community contributions to refine its role in
computational mathematics.

9 Conclusion
Laurent represents a specialized advancement in theorem mechanization, tailored
for classical and constructive analysis. By embedding analysis primitives and
leveraging topological tactics and algebraic solvers, it offers a unique tool for
functional analysts, complementing the broader capabilities of Lean and Coq. This
work underscores the potential of domain-specific proof assistants in advancing
computational mathematics.
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