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Abstract

The purpose of this work is to clarify all topos definitions using type
theory. Not much efforts was done to give all the examples, but one
example, a topos on category of sets, is constructively presented at the
finale.

As this cricial example definition is used in presheaf definition, the
construction of category of sets is a mandatory excercise for any topos li-
brary. We propose here cubicaltt! version of elementary topos on category
of sets for demonstration of categorical semantics (from logic perspective)
of the fundamental notion of set theory in mathematics.

Other disputed foundations for set theory could be taken as: ZFC,
NBG, ETCS. We will disctinct syntetically: i) category theory; ii) set
theory in univalent foundations; iii) topos theory, grothendieck topos, ele-
mentary topos. For formulation of definitions and theorems only Martin-
Lof Type Theory is requested. The proofs involve cubical type checker
primitives.

Keywords: Martin-Lof Type Theory, Topos Theory, Cubical Type
Theory
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Intro

One can admit two topos theory lineages. One lineage takes its roots from
published by Jean Leray in 1945 initial work on sheaves and spectral sequences.
Later this lineage was developed by Henri Paul Cartan, André Weil. The peak
of lineage was settled with works by Jean-Pierre Serre, Alexander Grothendieck,
and Roger Godement.

Second remarkable lineage take its root from William Lawvere and Myles
Tierney. The main contribution is the reformulation of Grothendieck topology
by using subobject classifier.

Category Theory

First of all very simple category theory up to pullbacks is provided. We give
here all definitions only to keep the context valid.

Definition 1. (Category Signature). The signature of categoryisa ) ,., A —
A — U where U could be any universe. The pr; projection is called Ob and pr,
projection is called Hom(a, b), where a,b : Ob.

cat: U= (A: U) * (A—> A —> 1)

Definition 2. (Precategory). More formal, precategory C consists of the follow-
ing. (i) A type Obc, whose elements are called objects; (ii) for each a,b : Obg,
a set Home (a, b), whose elements are called arrows or morphisms. (iii) For each
a : Obg, a morphism 1, : Homeg(a, a), called the identity morphism. (iv) For
each a,b,c : Obg, a function Homg (b, ¢) — Home(a,b) — Home(a, ) called
composition, and denoted g o f. (v) For each a,b : Obe and f : Home(a, b),
f=1,0fand f = fol, (vi)For each a,b,c,d: A and f : Home(a,b),
g : Homg (b, ¢), h : Home(c,d), ho(go f) = (hog)o f.

isPrecategory (C: cat): U

(id: (x: C.1) — C.2 x x)

(c: (xyz: Cl) >C.2 xy—>C.2yz-—>C2x12)
(homSet: (x y: C.1) —> isSet (C.2 x y))

(left: (x y: C.1) — (f: C.2 x y) —>

Path (C.2 x y) (¢ x x y (id x) f) f)

* % % |

* (right: (x y: C.1) — (f: C.2 x y) —>
Path (C.2 xy) (¢ xy y f (id y)) f)
* (((xyzw: C1l) > (f: C.2 xy) —>
(g: C.2 y z) > (h: C.2 z w) —>
Path (C.2 xw) (¢ x zw (c xy z f g) h)
(cxywf (cyzwgh))

carrier (C: precategory) : U
hom (C: precategory) (a b: carrier C) : U
compose (C: precategory) (x y z: carrier C)

(f: hom C x y) (g: hom Cy z) : hom C x z



Definition 3. (Categorical Pullback). The pullback of the cospan A ER c<B
is a object A X B with morphisms pb; : X¢ — A, pby : X¢ — B, such that
diagram commutes:

b
Axe B2, B

N

A

pby

C

Pullback (x¢,pb1,pbe) must be universal, means for any (D, q1,g2) for which
diagram also commutes there must exists a unique v : D — X, such that
pby ou = ¢q1 and pby o gs.

homTo (C: precategory) (X: carrier C): U

= (Y: carrier C) x hom CY X
cospan (C: precategory): U

= (X: carrier C) % (_.: homTo C X) % homTo C X
cospanCone (C: precategory) (D: cospan C): U

= (W: carrier C) * hasCospanCone C DW
cospanConeHom (C: precategory) (D: cospan C)

(E1 E2: cospanCone CD) : U

= (h: hom C E1.1 E2.1) % isCospanConeHom C D E1 E2 h
isPullback (C: precategory) (D: cospan C) (E: cospanCone C D) : U

= (h: cospanCone C D) —> isContr (cospanConeHom C D h E)
hasPullback (C: precategory) (D: cospan C) : U

= (E: cospanCone C D) % isPullback C D E

Definition 4. (Category Functor). Let A and B be precategories. A functor
F : A — B consists of: (i) A function Fpp : ObpA — Obp; (ii) for each
a,b : Oby, a function From : Homa(a,b) = Homp(Fou(a), Fop(b)); (iii) for
each a : Oba, Fou(1,) = 1p,,(a); (iv) for a,b,c: Oby and f : Hom(a,b) and
g: HomA(ba C)v F(g © f) = FHom(g) © FHom(f)'

catfunctor (A B: precategory): U
= (ob: carrier A —> carrier B)
* (mor: (x y:carrier A)—>hom A x y—>hom B(ob x)(ob y))
* (id: (x: carrier A) —> Path (hom B (ob x) (ob x))
(mor x x (path A x)) (path B (ob x)))
((x y z: carrier A) —> (f: hom A x y) — (g: hom A y z) —>
Path (hom B (ob x) (ob z)) (mor x z (compose A xy z f g))
(compose B (ob x) (ob y) (ob z) (mor x y f) (mor y z g)))

*



Definition 5. (Terminal Object). Is such object Ob¢, that

H isContr(Home (y, ).
z,y:Obc

isTerminal (C: precategory) (y: carrier C): U
= (x: carrier C) —> isContr (hom C x y)
terminal (C: precategory): U
= (y: carrier C) % isTerminal C y

Set Theory

Here is given the co-groupoid model of sets.

Definition 6. (Mere proposition, PROP). A type P is a mere proposition if
for all x,y : P we have x = y:

isProp(P) = H (x =vy).
z,y: P
Definition 7. (0-type). A type Aisa O-typeisforallz,y: Aandp,q:z =4y
we have p = q.

Definition 8. (1-type). A type A is a l-typeifforall z,y: Aand p,q:x =4y
and 7,5 :p ==, q, we have r = s.

Definition 9. (A set of elements, SET). A type A is a SET if for all z,y: A
and p,q: x =y, we have p = ¢:

isSet(A H H

z,y: A p,qr=y
Definition 10. data N =2 | S (n: N)
n_grpd (A: U) (n: N): U= (a b: A) —> rec A a b n where

rec (A: U) (a b: A) : (k: N) => U
= split { Z—> Path Aab ; Sn—> ngrpd (Path A ab) n }

isContr (A: U): U= (x: A) x ((y: A) — Path A x y)
isProp (A: U): U= n_grpd A Z

isSet (A: U): U= n_grpd A (S Z)

PROP : U = (X:U) * isProp X

SET U = (X:U) * isSet X

Definition 11. (II-Contractability). If fiber is set thene path space between
any sections is contractible.

setPi (A: U) (B: A—> U) (h: (x: A) —> isSet (B x)) (f g: Pi A B)
(p q: Path (Pi AB) f g)
Path (Path (Pi AB) f g) p q

S



Definition 12. (X-Contractability). If fiber is set then ¥ is set.

setSig (A:U) (B: A —> U) (base: isSet A)
(fiber: (x:A) —> isSet (B x)) : isSet (Sigma A B)

Definition 13. (Unit type, 1). The unit 1 is a type with one element.

data unit = tt

unitRec (C: U) (x: C): unit —> C = split tt —> x

unitInd (C: unit —> U) (x: C tt): (z:unit) —> C z
= split tt —> x

Theorem 1. (Category of Sets, Set). Sets forms a Category. All compositional
theorems proved by using reflection rule of internal language. The proof that
Hom forms a set is taken through Il-contractability.

Set: precategory = ((Ob,Hom),id,c,HomSet,L,R,Q) where
Ob: U = SET
Hom (A B: Ob): U= A.1 —> B.1
id (A: Ob): Hom A A = idfun A.1
¢c (ABC: Ob) (f: Hom A B) (g: Hom B C): Hom A C
=0A.1B.1C1gf
HomSet (A B: Ob): isSet (Hom A B) = setFun A.1 B.1 B.2
L (A B:Ob) (f:Hom A B): Path (Hom A B)(c A AB (id A)f)f
= refl (Hom A B) f
R (A B:Ob) (f:Hom A B): Path (Hom A B)(c AB B f(id B))f
= refl (Hom A B) f
Q (AB CD: Ob) (f:Hom A B)
Path (Hom A D) (
(
(

= refl (Hom A D)

1 Topos Theory

Topos theory extends category theory with notion of topological structure but
reformulated in a categorical way as a category of sheaves on a site or as one
that has cartesian closure and subobject classifier. We give here two definitions.

1.1 Topological Structure

Definition 14. (Topology). The topological structure on A (or topology) is a
subset S € A with following properties: i) any finite union of subsets of S is
belong to S; ii) any finite intersection of subsets of S is belong to S. Subets of
S are called open sets of family S.

Structure topology (A : Type) := {
open :> (A —> Prop) —> Prop;
empty_open: open (empty _);
full_open: open (full _);



inter_open: forall u,
open u —> forall v, open v
—> open (inter A u v) ;
union_open: forall s, (subset _ s open)
—> open (union A s) }.

For fully functional general topology theorems and Zorn lemma you can refer
to the Coq library 2topology by Daniel Schepler.

1.2 Grothendieck Topos

Grothendieck Topology is a calculus of coverings which generalizes the algebra
of open covers of a topological space, and can exist on much more general
categories. There are three variants of Grothendieck topology definition: i)
sieves; ii) coverage; iii) covering families. A category have one of these three is
called a Grothendieck site.

Examples: Zariski, flat, étale, Nisnevich topologies.

A sheaf is a presheaf (functor from opposite category to category of sets)
which satisties patching conditions arising from Grothendieck topology, and
applying the associated sheaf functor to preashef forces compliance with these
conditions.

The notion of Grothendieck topos is a geometric flavour of topos theory,
where topos is defined as category of sheaves on a Grothendieck site with geo-
metric moriphisms as adjoint pairs of functors between topoi, that satisfy ex-
actness properties. [2]

As this flavour of topos theory uses category of sets as a prerequisite, the
formal construction of set topos is cricual in doing sheaf topos theory.

Definition 15. (Sieves). Sieves are a family of subfunctors
RC Home(_,U),U € C,

such that following axioms hold: i) (base change) If R C Home(_, U) is covering
and ¢ : V' — U is a morphism of C, then the subfuntor

¢ (R)={y:W = V]¢-ve R}

is covering for V; ii) (local character) Suppose that R, R C Hom¢c(_,U) are
subfunctors and R is covering. If ¢~1(R') is covering for all ¢ : V — U in R,
then R’ is covering; iii) Homc(_,U) is covering for all U € C.

2https://github.com/verimath /topology



Definition 16. (Coverage). A coverage is a function assigning to each Ob¢ the
family of morphisms {f; : U; — U}er called covering families, such that for any
g:V — U exist a covering family {h : V; — V'},c; such that each composite

v, U
h; o g factors some f;: lh lfz_
Vv 25U

Co (C: precategory) (cod: carrier C) : U
= (dom: carrier C)
* (hom C dom cod)

Delta (C: precategory) (d: carrier C) : U
= (index: U)
* (index —> Co C d)

Coverage (C: precategory): U
= (cod: carrier Q)
* (fam: Delta C cod)
x (coverings: carrier C —> Delta C cod —> U)
x (coverings cod fam)

Definition 17. (Grothendieck Topology). Suppose category C has all pull-
backs. Since C is small, a pretopology on C consists of families of sets of
morphisms

{ba : Uy = UL U € C,

called covering families, such that following axioms hold: i) suppose that ¢, :
U, — U is a covering family and that ¢ : V' — U is a morphism of C. Then
the collection V' xy U, — V is a cvering family for V. ii) If {¢, : Uy — U}
is covering, and {7y, : Wa,s3 — Ua} is covering for all o, then the family of
composites

Was 225 U, 225U
is covering; iii) The family {1: U — U} is covering for all U € C.

Definition 18. (Site). Site is a category having either a coverage, grothendieck
topology, or sieves.

site (C: precategory): U
= (C: precategory) x Coverage C

Definition 19. (Presheaf). Presheaf of a category C is a functor from opposite
category to category of sets: C°P — Set.

presheaf (C: precategory): U
= catfunctor (opCat C) Set



Definition 20. (Presheaf Category, PSh). Presheaf category PSh for a site C
is category were objects are presheaves and morphisms are natural transforma-
tions of presheaf functors.

Definition 21. (Sheaf). Sheaf is a presheaf on a site. In other words a presheaf
F: C°? — Set such that the cannonical map of inverse limit
—
FU) = viul}leRF(V)

is an isomorphism for each covering sieve R C Hom¢(.,U). Equivalently, all
induced functions

Home(Home(,U), F) = Home(R, F)
should be bejections.
sheaf (C: precategory): U

= (S: site Q)
* presheaf S.1

Definition 22. (Sheaf Category, Sh). Sheaf category Sh is a category where
objects are sheaves and morphisms are natural transformation of sheves. Sheaf
category is a full subcategory of category of presheaves PSh.

Definition 23. (Grothendieck Topos). Topos is the category of sheaves Sh(C, J)
on a site C with topology J.

Theorem 2. (Giraud). A category C is a Grothiendieck topos iff it has following
properties: i) has all finite limits; ii) has small disjoint coproducts stable under
pullbacks; iii) any epimorphism is coequalizer; iv) any equivalence relation R —
E is a kernel pair and has a quotient; v) any coequalizer R — E — @ is stably
exact; vi) there is a set of objects that generates C.

Definition 24. (Geometric Morphism). Suppose that C and D are Grothendieck
sites. A geometric morphism

f:Sh(C) — Sh(D)

consist of functors f. : Sh(C) — Sh(D) and f* : Sh(D) — Sh(C) such that f*
is left adjoint to f. and f* preserves finite limits. The left adjoint f* is called
the inverse image functor, while f, is called the direct image. The inverse image
functor f* is left and right exact in the sense that it preserves all finite colimits
and limits, respectively.

Definition 25. (Cohesive Topos). A topos E is a cohesive topos over a base
topos S, if there is a geometric morphism (p*,p.) : E — S, such that: i) exists
adjunction p' - p, and p' - p,; ii) p* and p' are full faithful; iii) py preserves
finite products.

This quadruple defines adjoint triple:

/4»4;



1.3 Elementary Topos

Giraud theorem was a synonymical topos definition involved only topos proper-
ties but not a site properties. That was step forward on predicative definition.
The other step was made by Lawvere and Tierney, by removing explicit depen-
dance on categorical model of set theory (as category of set is used in definition
of presheaf). This information was hidden into subobject classifier which was
well defined through categorical pullback and property of being cartesian closed
(having lambda calculus as internal language).

Elementary topos doesn’t involve 2-categorical modeling, so we can con-
struct set topos without using functors and natural transformations (what we
need in geometrical topos theory flavour). This flavour of topos theory more
suited for logic needs rather that geometry, as its set properties are hidden un-
der the predicative predicative pullback definition of subobject classifier rather
that functorial notation of presheaf functor. So we can simplify proofs at the
homotopy levels, not to lift everything to 2-categorical model.

Definition 26. (Monomorphism). An morphism f : Y — Z is a monic or
mono if for any object X and every pair of parralel morphisms g;,g2 : X = Y
the

fogi=fog2—g1= g
More abstractly, f is mono if for any X the Hom(X, _) takes it to an injective
function between hom sets Hom(X,Y) — Hom(X, Z).

mono (P: precategory) (Y Z: carrier P) (f: hom PY Z): U
= (X: carrier P) (gl g2: hom P X Y)
—> Path (hom P X Z) (compose P XY Z gl f)
(compose P XY Z g2 f)
—> Path (hom P X Y) gl g2

Definition 27. (Subobject Classifier[3]). In category C with finite limits, a

subobject classifier is a monomorphism true : 1 — € out of terminal object 1,

such that for any mono U — X there is a unique morphism yxy : X — Q and
U—*—-1

pullback diagram: l lmw

X0 X0

subobjectClassifier (C: precategory): U
= (omega: carrier C)
(end: terminal C)
(trueHom: hom C end.l omega)
(chi: (V X: carrier C) (j: hom CV X) —> hom C X omega)
(square: (V X: carrier C) (j: hom CV X) —> mono C V X j
—> hasPullback C (omega,(end.l, trueHom) ,(X,chi VX j)))
* ((VX: carrier C) (j: hom CV X) (k: hom C X omega)
—> mono C V X j
—> hasPullback C (omega,(end.1l,trueHom),(X,k))
—> Path (hom C X omega) (chi VX j) k)

* ¥ ¥ %



Theorem 3. (Category of Sets has Subobject Classifier).

Definition 28. (Cartesian Closed Categories). The category C is called carte-
sian closed if exists all: i) terminals; ii) products; iii) exponentials. Note that
this definition lacks beta and eta rules which could be found in embedding
MLTT.

isCCC (C: precategory): U

= (Exp: (A B: carrier C) —> carrier O)

* (Prod (A B: carrier C) —> carrier O)

* (Apply: (A B: carrier C) —> hom C (Prod (Exp A B) A) B)
x (P1: (A B: carrier C) — hom C (Prod A B) A)

* (P2: (A B: carrier C) — hom C (Prod A B) B)

* (Term terminal C)

* unit

Theorem 4. (Category of Sets is cartesian closed). As you can see from exp
and pro we internalize II and X types as SET instances, the isSet predicates are
provided with contractability. Exitense of terminals is proved by propPi. The
same technique you can find in MLTT embedding.

cartesianClosure : isCCC Set
= (expo,prod,appli,projl ,proj2 ,term,tt) where

exp (A B: SET): SET = (A.1 —> B.1, setFun A.1 B.1 B.2)
pro (A B: SET): SET = (prod A.1 B.1, setSig A.1 (\(- : A.1)
—> B.1) A.2 (\(- : A.1) = B.2))

—> SET = \(A B: SET) —> exp A B

—> SET = \(A B: SET) — pro A B

: SET) —> hom Set (pro (exp A B) A) B

: SET) —> \(x:(pro(exp A B)A).1)—> x.1 x.2

B: SET)

B: SET)

B: SET)

B: SET)

B: SET) —> hom Set (pro A B) A
B )

B )

B )

(x

. SET

expo:
prod:
appli:

he)
—
o
<
—
_—
~ o~~~ o~~~

: SET) (x: (pro AB).1) — x.1

: SET) —> hom Set (pro A B) B

= : SET) (x: (pro AB).1) —> x.2

unitContr : SET) (f: x.1 — unit) : isContr (x.1 —> unit)

= (f, \(z: x.1 —=> unit) —> propPi x.1 (\(-:x.1)—>unit)

(\(x:x.1) —> propUnit) f z)

term: terminal Set = ((unit,setUnit),
\(x: SET) —> unitContr x (\(z: x.1) —> tt))

= e e

Note that rules of cartesian closure forms a type theoretical langage called
lambda calculus.

Definition 29. (Elementary Topos). Topos is a precategory which is cartesian
closed and has subobject classifier.

Topos (cat: precategory) : U
= (cartesianClosure: isCCC cat)
x subobjectClassifier cat

Theorem 5. (Topos Definitions). Any Grothendieck topos is an elementary
topos too. The proof is sligthly based on results of Giraud theorem.

10



Theorem 6. (Category of Sets forms a Topos). There is a cartesian closure
and subobject classifier for a categoty of sets.

internal : Topos Set
= (cartesianClosure , hasSubobject)

Theorem 7. (Freyd). Main theorem of topos theory[1]. For any topos C and
any b : Ob¢ relative category C | b is also a topos. And for any arrow f:a — b
inverse image functor f*: C | b — ¢ | a has left adjoint ) f and right adjoin

I

Conclusion

We gave here constructive definition of topology as finite unions and intersec-
tions of open subsets. Then make this definition categorically compatible by
introducing Grothendieck topology in three different forms: sieves, coverage,
and covering families. Then we defined an elementary topos and introduce cat-
egory of sets, and proved that Set is cartesian closed, has object classifier and
thus a topos.

This intro could be considered as a formal introduction to topos theory (at
least of the level of first chapter) and you may evolve this library to your needs or
ask to help porting or developing your application of topos theory to a particular
formal construction.
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