Issue IV: Higher Inductive Types

Maksym Sokhatskyi *

! National Technical University of Ukraine
Igor Sikorsky Kyiv Polytechnic Institute
May 4, 2019

Awnoraris

CW-complexes are central to both homotopy theory and homotopy
type theory (HoTT) and are encoded in cubical theorem-proving systems
as higher inductive types (HIT), similar to recursive trees for (co)inductive
types. We explore the basic primitives of homotopy theory, which are
considered as a foundational basis in theorem-proving systems.

Keywords: Homotopy Theory, Type Theory

3mMmicT

1 _CW-Complexes|

[1 Tniroduction: Countable Consfructorsl
1.2 Motivation: Higher Inductive Types|

1.3 Metatheory: Cohesive Topo1
L3I GeometricProofd

WWWWWwWwwwwN

Higher Inductive Types|

2.1 Suspension| Lo

2.5 Truncationl e

2.6 Quotients| 1
................................. 11
2.8 Smash Producil

1 CW-Complexes

CW-complexes are spaces constructed by attaching cells of various dimen-
sions. In HoT'T, they are encoded as higher inductive types (HIT), where cells
are constructors for points and paths.

Definition 1. (Cell Attachment). The attachment of an n-cell to a space X
along f : S" ! = X is a pushout:

st I x

L |

D —2— X Uy D"

Here, ¢ : S"~! < D™ is the boundary inclusion, and X Uy D™ is the pushout
that attaches an n-cell to X via f. The result depends on the homotopy class

of f.

Definition 2. (CW-Complex). A CW-complex is a space X, constructed in-
ductively by attaching cells, with a skeletal filtration:

e (—1)-skeleton: X_; = @.

e For n > 0, the n-skeleton X,, is obtained by attaching n-cells to X, .
For indices J,, and maps {f; : S"~! — X,,_1};e,., X, is the pushout:

jes, S"7 1L, Xn-1

.

g,
s, D" ——— Xn
where [[, S"7', [1;c,, D™ are disjoint unions, and i, : X,,—1 = X, is
the inclusion.
e X is the colimit:
g=X_129Xg—=>X]1—=...=> X,

where X, is the n-skeleton, and X = colim,,_, - X,. The sequence is the
skeletal filtration.

In HoTT, CW-complexes are higher inductive types (HIT) with constructors
for cells and paths for attachment.

1.1 Introduction: Countable Constructors

Some HITs require an infinite number of constructors for spaces, such as
Eilenberg-MacLane spaces or the infinite sphere S°.
def S : U
:= inductive { base

| loop (n: N) : base = base

}

Challenges include type checking, computation, and expressiveness.
Agda Cubical uses cubical primitives to handle HITs, supporting infinite
constructors via HITs indexed by natural numbers, as colimits.

1.2 Motivation: Higher Inductive Types

HITs in HoTT enable direct encoding of topological spaces, such as CW-
complexes. In homotopy theory, spaces are constructed by attaching cells via
attaching maps. HoTT views types as spaces, elements as points, and equalities
as paths, making HITs a natural choice. Standard inductive types cannot cap-
ture higher homotopies, but HITs allow constructors for points and paths. For
example, the circle S (Definition 2) has a base point and a loop, encoding its
fundamental group Z. HITs avoid the use of multiple quotient spaces, preserving
the synthetic nature of HoTT. In cubical type theory, paths are intervals (e.g.,
< ¢ >) with computational content, unlike propositional equalities, enabling
efficient type checking in tools such as Agda Cubical.

1.3 Metatheory: Cohesive Topoi

1.3.1 Geometric Proofs

RASH&
For differential geometry, type theory incorporates primitive axioms of categor-
ical meta-theoretical models of three Schreiber-Shulman functors: infinitesimal
neighborhood (<), reduced modality (), and infinitesimal discrete neighbor-
hood (&).
1.3.2 Flat Proofs
1.3.3 Sharp Proofs
1.3.4 Bose Proofs
1.3.5 Fermi Proofs

1.3.6 Linear Proofs

@Hdx -4 —o

For engineering applications (e.g., Milner’s m-calculus, quantum computing)
and linear type theory, type theory embeds linear proofs based on the adjunction
of the tensor and linear function spaces: (A ® B) —0 A ~ A — (B — (),
represented in a symmetric monoidal category D for a functor [A, B] as: D(A®

B,C) ~D(4,[B,C]).

2 Higher Inductive Types

CW-complexes are central to HoTT and appear in cubical type checkers
as HITs. Unlike inductive types (recursive trees), HITs encode CW-complexes,
capturing points (0-cells) and higher paths (n-cells). The definition of an HIT
specifies a CW-complex through cubical composition, an initial algebra in the
cubical model.

2.1 Suspension

The suspension ¥ A of a type A is a higher inductive type that constructs a
new type by adding two points, called poles, and paths connecting each point
of A to these poles. It is a fundamental construction in homotopy theory, often
used to shift homotopy groups, e.g., obtaining S"*! from S™.

Definition 3. (Formation). For any type A : U, there exists a suspension type
YA U.

Definition 4. (Constructors). For a type A : U, the suspension YA : U is
generated by the following higher inductive compositional structure:

north
Y := (south
merid : (a : A) — north = south
def ¥ (A: U) : U
:= inductive north

{
| south

| merid (a: A) : north = south
}

Theorem 1. (Elimination). For a family of types B : ¥A — U, points n :
B(north), s : B(south), and a family of dependent paths

m : II(a : A), PathOver(B, merid(a),n, s),
there exists a dependent map Indsa : (z: £A) — B(z), such that:

Inds 4 (north) =n
Inds 4 (south) = s
Indy 4 (merid(a,)) = m(a, 1)

def PathOver (B: ¥ A —> U) (a: A) (n: B north) (s: B south) : U
:= PathP (A i , B (merid a @ i)) n s

def IndsA (A: U) (B: ¥ A—>U) (n: B north) (s: B south)
(m: (a: A) — PathOver B (merid a) n s) : (x: ¥ A) —> B x
:= split { north —> n | south —> s | merid a @i —>ma @ i }

Theorem 2. (Computation).
Indsy A(north) = nInds A(south) = sIndy, A(merid(a, 1)) = m(a,)

)
def -3 (A: U) (B: XA — U) (n: B north) (s: B south)
(m: (a: A) — PathOver B (merid a) n s) (x: X A)
: Path (B x) (I ABn s m x)
split { north —> n | south —> s | merid a @ i —>ma @ i }

Theorem 3. (Uniqueness). Any two maps hq, hs : (z : ¥A) — B(z) are homo-
topic if they agree on north, south, and merid, i.e., if hj(north) = hy(north),
hi(south) = ha(south), and hq(merid a) = ho(merid a) for all a : A.

2.2 Pushout

The pushout (amalgamation) is a higher inductive type that constructs a
type by gluing two types A and B along a common type C via maps f: C — A
and g : C — B. It is a fundamental construction in homotopy theory, used to
model cell attachment and cofibrant objects, generalizing the topological notion
of a pushout.

Definition 5. (Formation). For types A,B,C : U and maps f : C — A,
g : C — B, there exists a pushout U(A, B,C, f,g) : U

Definition 6. (Constructors). The pushout is generated by the following higher
inductive compositional structure:

01: A—=U(A,B,C, f,9)
U:=<poy: B—=UAB,C,f,9)
po3 : (c: C) — poi(f(c)) = poz2(g(c))

def U (ABC: U) (f: C—>A) (g: C—>B) : U
:= inductive { poi (a: A)
| poz (b: B)
| pos (c: C) : poi(f(c)) = poa(g(c))

Theorem 4. (Elimination). For a type D : U, maps u: A — D, v: B — D,
and a family of paths p : (¢ : C) — u(f(c)) = v(g(c)), there exists a map
Ind, : U(A, B,C, f,g) — D, such that:

Ind,(poz(d))

def PathOver (A B C : U) (
(b:uUABCTf g—U)
(¢ : C) (u: D (po1 (f
:= PathP (A i, D (po3 c i

def Indy : (ABC : U) (f : C—> A) (g : C— B)

(bD:UABCTf g — U

(uw: (a: A) = D (por a))

(v.: (b : B) - D (po2 b))

(p (¢ : C) — PathOver D ¢ (u (f ¢)) (v (g ¢)))
(x t UABCTf g) - Dx

::spllt{polaﬁua|pozb%vb|p03c@1~>pc@1}

Theorem 5. (Computation). For = : U(A, B,C, f, g),

Theorem 6. (Uniqueness). Any two maps u,v : U(A, B,C, f,g) — D are ho-
motopic if they agree on poy, poy, and pos, i.e., if u(po;(a)) = v(po;(a)) for
all a : A, u(poy(b)) = v(poy (b)) for all b: B, and u(pos(c)) = v(pos(c)) for all
c:C.

Example 1. (Cell Attachment) The pushout models the attachment of an n-
cell to a space X. Given f : S" ! — X and inclusion g : S"~! — D", the
pushout L(X, D™, 8"~ f g) is the space X Uy D", attaching an n-disk to X
along f.

st L x

s |

D" — X Uy D"

2.3 Spheres

Spheres are higher inductive types with higher-dimensional paths, represent-
ing fundamental topological spaces.

Definition 7. (Pointed n-Spheres) The n-sphere S™ is defined recursively as a
type in the universe U using general recursion over dimensions:

point : S™,
S™ := q surface : < iy,...ip, > [({1 = 0) — point, ({1 = 1) — point, ...
(in, = 0) — point, (i, = 1) — point |
Definition 8. (n-Spheres via Suspension) The n-sphere S™ is defined recur-

sively as a type in the universe U using general recursion over natural numbers
N. For each n € N, the type S™ : U is defined as:

o [50=2
T gntl — Z(sn).

def sphere : N — U := N-iter U 2 X
This iterative definition applies the suspension functor ¥ to the base type 2

(0-sphere) n times to obtain S™.

Example 2. (Sphere as CW-Complex) The n-sphere S™ can be constructed as
a CW-complex with one 0O-cell and one n-cell:

Xo = {base}, one point
X = Xg for 0 < k < n, no additional cells
X, : Attachment of an n-cell to X,,_; = {base} along f: S"~! — {base}

The constructor cell attaches the boundary of the m-cell to the base point,
yielding the type S™.

2.4 Hub and Spokes

The hub and spokes construction ® defines an n-truncation, ensuring that
the type has no non-trivial homotopy groups above dimension n. It models the
type as a CW-complex with a hub (central point) and spokes (paths to points).

Definition 9. (Formation). For types S, A : U, there exists a hub and spokes
type ® (S, A) : U.

Definition 10. (Constructors). The hub and spokes type is freely generated by
the following higher inductive compositional structure:

base: A — @ (S, A)
®:=<chub: (S =0 (S,4)) =& (S,4)
spoke: (f: S — ® (S,A4)) = (s: 5) = hub(f) = f(s)

def ® (S A: U) : U

:= inductive { base (x: A)

| hub (f: S —> ©® S A)

| spoke (f: S—> ® S A) (s:S) : hub f = f s
}

Theorem 7. (Elimination). For a family of types P : HubSpokes S A — U,
maps pbase : (r : A) — P(basex), phub : (f : S — HubSpokesS A) —
P(hub f), and a family of paths pspoke : (f : S — HubSpokesS A) — (s :
S) — PathP (< i > P(spoke fs@34)) (phub f) (P(fs)), there exists a map
hubSpokesInd : (z : HubSpokes S A) — P(z), such that:

Indg (base z) = pbase z
Indg (hub f) = phub f
Indg (spoke f s @) = pspoke f s @4

2.5 Truncation
Set Truncation

Definition 11. (Formation). Set truncation (0-truncation), denoted ||A||o, en-
sures that the type is a set, with homotopy groups vanishing above dimension
0.

Definition 12. (Constructors). For A : U, ||A|lo : U is defined by the following
higher inductive compositional structure:

1 llo = inc: A — ||A]lo
—o- squash : (a,b: ||Allo) = (p,g:a=b) > p=gq

def || _Jlo (A: U) : U
:= inductive { inc (a: A)
| squash (a b: ||Allo) (p q: Path (||Allo) a b
<i j> | (i 0) >p@j, (i 1) —> q
(j =0) —> a, (j=1) —>b

)
@j7
]

}

Theorem 8. (Elimination ||A|g) For a set B : U (i.e., isSet(B)), and a map
f:+ A — B, there exists setTruncRec : || Ao — B, such that Ind) 4, (inc(a)) =

f(a).

Groupoid Truncation

Definition 13. (Formation). Groupoid truncation (1-truncation), denoted || A||1,
ensures that the type is a 1-groupoid, with homotopy groups vanishing above
dimension 1.

Definition 14. (Constructors). For A : U, ||A|l1 : U is defined by the following
higher inductive compositional structure:

Il = inc: A— ||Allx
- squash : (a,b: ||A|1) = (p,g:a=b) = (r,s:p=q) > r=s

def || |1 (A: U) : U
:= inductive { inc (a: A)
| squash (a b: A1) (p a: Path (JAl1) a b)
(r s: Path (Path (JJA]l1) a b) p q) <i j k>

[(i=0) >r@j@k, (i=1)->s@j @k,
(j =0) —>pak, (j =1) > qQKk,
(k= 0) > a, (k=1) > b |

}

Theorem 9. (Elimination ||Al|;) For a 1-groupoid B : U (i.e., isGroupoid(B)),
and amap f : A — B, there exists Ind| 4, : [|Al|1 = B, such that Ind 4, (inc(a)) =
f(a).

2.6 Quotients
Set Quotient Spaces

Quotient spaces are a powerful computational tool in type theory, embedded
in the core of Lean.

Definition 15. (Formation). Set quotient spaces construct a type A, quotiented
by a relation R: A — A — U, ensuring that the result is a set.

Definition 16. (Constructors). For atype A : U and arelation R: A - A — U,
the set quotient space A/R : U is freely generated by the following higher
inductive compositional structure:

quot: A — A/R
A/R := {ident : (a,b: A) — R(a,b) — quot(a) = quot(b)
trunc : (a,b: A/R) = (p,q:a=b) > p=q

def / (A: U) (Rt A—>A-—>10U) : U

:= inductive { quot (a: A)
| ident (a b: A) (r: R a b) : quot(a) = quot(b)
| trunc (a b / AR) (p q Path (/ AR) a b)
<t j> [(i=0 —>p@j, (i=1) ->q0j,
(3 =0) > a, (=1 —>b]

}

Theorem 10. (Elimination). For a family of types B : A/R — U with isSet(Bzx),
and maps f : (z : A) = B(quot(x)), g : (a,b: A) = (r : R(a,b)) — PathP(<
i > B(ident(a,b,7) @ i))(f(a))(f(b)), there exists Indy, g : II(x : A/R), B(x),
such that Ind 4/ r(quot(a)) = f(a).

Groupoid Quotient Spaces

Definition 17. (Formation). Groupoid quotient spaces extend set quotient
spaces to produce a 1-groupoid, including constructors for higher paths. Groupoid
quotient spaces construct a type A, quotiented by a relation R: A — A — U,
ensuring that the result is a groupoid.

Definition 18. (Constructors). For a type A : U and arelation R: A — A — U,
the groupoid quotient space A//R : U includes constructors for points, paths,
and higher paths, ensuring a 1-groupoid structure.

10

2.7 Wedge

The wedge of two pointed types A and B, denoted A V B, is a higher in-
ductive type representing the union of A and B with identified base points.
Topologically, it corresponds to A x {yo} U {zo} x B, where z¢ and y, are the
base points of A and B, respectively.

Definition 19. (Formation). For pointed types A, B : pointed, the wedge AVB :
Uu.

Definition 20. (Constructors). The wedge is generated by the following higher
inductive compositional structure:

winl: A.1 > AV B
V=< winr: B.1— AV B
wglue : winl(A.2) = winr(B.2)

def Vv (A : pointed) (B : pointed) : U
:= inductive { winl (a : A.1)
| winr (b : B.1)
| wglue : winl(A.2) = winr(B.2)

}

Theorem 11. (Elimination). For a type P : AV BU, maps [: A1l — C,
g: B.1 = C, and a path p : PathOverlue(P, f(A.2), g(B.2)), there exists a map
Indy : AV B — C, such that:

Ind(winl(a)) = f(a)
Ind(winr(b)) = g(b)
Ind(wglue(z)) = p(x)

def PathOverGlue : (P : A v B U)
(p : P (inl (A.2))) (q : P (inr (B.2))) : U
:= PathP (A i - P (wglue i)) p ¢q

def Indy (A B : pointed) (C : U) (f : A.1 —>C) (g : B.1 —> C)
(p : Path C (f A.2) (g B.2))
: AvB-—>C
:= split { winl a —> f a | winr b —> g b | wglue @ x —> p @ x }

Theorem 12. (Computation). For z : Wedge AB,

Indy (winl a) = f(a)
Ind, (winr b) = ¢(b)
Indy (wglue Qz) = pQx
Theorem 13. (Uniqueness). Any two maps h1, he : Wedge AB — C' are homo-

topic if they agree on winl, winr, and wglue, i.e., if hy(winl a) = ho(winl a) for
all @ : A.1, hy(winr b) = he(winr b) for all b: B.1, and hq(wglue) = ha(wglue).

11

2.8 Smash Product

The smash product of two pointed types A and B, denoted A A B, is a
higher inductive type that quotients the product A x B by the pushout A U B.
It represents the space A x B/(A x {yo}U{xo} x B), collapsing the wedge to a
single point.

Definition 21. (Formation). For pointed types A, B : pointed, the smash prod-
uct ANB:U.

Definition 22. (Constructors). The smash product is generated by the follow-
ing higher inductive compositional structure:

basel : AN B

baser : AN B
ANB:=<proj(z:Al)(y: B1l): AAB

gluel(a : A.2) : proj(a, B.2) = basel

gluer(b : B.2) : proj(A.2,b) = baser

def A (A : pointed) (B : pointed) : U
:= inductive { basel
| baser

| proj (a : A.1) (b : B.1)

| gluel (a : A.2) : proj(a,B.2) = basel
| gluer (a : B.2) : proj(A.2,b) = baser
}

Theorem 14. (Elimination). For a family of types P : Smash A B — U, points
pbasel : P(basel), pbaser : P(baser), maps pproj : (z : A1) = (y : B.1) —
P (projxy), and a family of paths pgluel : (a : A.1) — pproj(a, B.2) = pbasel,
pgluer : (b : B.1) — pproj(A.2,b) = pbaser, there exists a map Inds : (z :
AN B) — P(z), such that:

Ind, (basel) = pbasel

Ind, (baser) = pbaser

Indx (projzy) = pprojzy
Indx (gluela @4) = pgluela @1
Inda (gluer b@i) = pgluerb @+

def Indn (A B : pointed) (P : A A B — U)
(pbasel : P basel) (pbaser : P baser)
(pproj : (x : A1) —> (y : B.1) = P (proj x y))
(pgluel : (a : A.1) —> PathP (<i> P (gluel a @ i)) (pproj a B.2) pbasel)
(pgluer : (b : B.1) — PathP (<i> P (gluer b @ i)) (pproj A.2 b) pbaser)
: (z : AANB) >P z
:= split { basel —> pbasel | baser —> pbaser | proj x y —> pproj x y
| gluel a @ i —> pgluel a @ i | gluer b @ i —> pgluer b @ i }

12

Theorem 15. (Computation). For a family of types P : A A B — U, points
pbasel : P(basel), pbaser : P(baser), map pproj : (z : A1) —» (y : B.1) —
P(projxy), and families of paths pgluel : (a : A.1) — PathP (< ¢ > P(gluela @ 1)) (pproja B.2) pbasel,
pgluer : (b : B.1) — PathP (< i > P(gluerb@i)) (pproj A.2b) pbaser, the map
Inds : (2 : AA B) — P(z) satisfies all equations for all variants of the predicate
P:

Inda (basel) = pbasel

Ind, (baser) = pbaser

Inda (projzy) = pprojzy

Inda (gluela @) = pgluela @4

Inda (gluer b@i) = pgluerb @+

Theorem 16. (Uniqueness). For a family of types P : AA B — U, and
maps hi,he : (z : AN B) — P(z), if there exist paths epasel : h1(basel) =
ho(basel), epaser : hi(baser) = ho(baser), eproj @ (z : A1) = (y : B.1) —
hi(projxy) = ha(projzy), egiuel : (a : A.1) — PathP (< i > hi(gluela @i) =
ha(gluela @ 1)) (eproj @ B.2) ebasels €gluer : (b : B.1) — PathP (< i > hi(gluerb@i) =
ho(gluer b@ 7)) (epmJA 2b) epaser; then hy = ho, i.e., there exists a path (z

AN B) = hi(2) = ha(2).

13

2.9 Join

The join of two types A and B, denoted A V B, is a higher inductive type
that constructs a type by joining each point of A to each point of B via a
path. Topologically, it corresponds to the join of spaces, forming a space that
interpolates between A and B.

Definition 23. (Formation). For types A, B : U, the join A* B : U.

Definition 24. (Constructors). The join is generated by the following higher
inductive compositional structure:

joinl: A— AV B
AV B:=<joinr: B— AV B
join(a : A)(b: B) : joinl(a) = joinr(b)

def v (A : U) (B:U) :U
= 1nduct1ve { joinl (a: A)
| joinr (b: B)
J join (a: A) (b: B) : joinl(a) = joinr(b)

Theorem 17. (Elimination). For a type C : Y, maps f : A = C, g: B — C,
and a family of paths h: (a: A) — (b: B) — f(a) = g(b), there exists a map
Indy : AV B — C, such that:

Indy, (joinl(a)) = f(a)
Indy, (joinr (b)) = g(b)
Indy (join(a, b,%)) = h(a,b,)

def Indy (ABC : U) (f : A—>C) (g : — C)
(h : (a :A) = (b : B) = Path C (a) (g b))
: AvB-—>C

:= split { joinl a —> f a
| joinr b —> g b
| join ab@i-—>habai
}

Theorem 18. (Computation). For all z: AV B, and predicate P, the rules of
Ind, hold for all parameters of the predicate P.

Theorem 19. (Uniqueness). Any two maps hy, hy : AV B — C are homotopic
if they agree on joinl, joinr, and join.

14

2.10 Colimit

Colimits construct the limit of a sequence of types, connected by maps, e.g.,
propositional truncations.

Definition 25. (Colimit) For a sequence of types A : nat — U and maps
f:(n:N)— An — A(succ(n)), the colimit type colimit(A, f) : U.

colim {ix : (n:nat) — An — colimit(A4, f)
" |ex:(n:nat) = (a: A(n)) — ix(succ(n), f(n,a)) = ix(n, a)

def colimit (A : nat —> U) (f : (n : nat) —> A n —> A (succ n)) : U
:= inductive { ix (n : nat) (x: A n)
| gx (n : nat) (a: A n)
<i> [(i=0) — ix (succ n) (f n a),
(i=1) —> ix n a |
}

Theorem 20. (Elimination colimit) For a type P : colimit Af — U, with
p: (n:nat) = (x : An) = P(ix(n,z)) and ¢ : (n : nat) = (a : An) —
PathP ((i) P(gx(n, a)@7))(p(succ n)(fna))(pna), there exists i : I;.colimit 45P(z),
such that i(ix(n,z)) = pnz.

15

2.11 Coequalizers
Coequalizer

The coequalizer of two maps f,g: A — B is a higher inductive type (HIT)
that constructs a type consisting of elements in B, where f and g agree, along
with paths ensuring this equality. It is a fundamental construction in homotopy
theory, capturing the subspace of B where f(a) = g(a) for a : A.

Definition 26. (Formation). For types A, B : U and maps f,g : A — B, the
coequalizer coeq ABfg : U.

Definition 27. (Constructors). The coequalizer is generated by the following
higher inductive compositional structure:

Coeq — {inC : B — Coeq(A, B, f,9)
T N elueC : (a: A) - inC(f(a)) = inC(g(a))

def Coeq (A B: U) (f g: A—B) : U
:= inductive { inC (b: B)
| glueC (a: A) : inC (f a) = inC (g a)

Theorem 21. (Elimination). For a type C : U, map h : B — C, and a family
of paths y : (x : A) — Pathe(h(fx),h(gz)), there exists a map coequRec :
coeq ABfg — C, such that:

coequRec(inC(z)) = h(zx)
coequRec(glueC(z, 1)) = y(z,1)

def coequRec (ABC : U) (f g : A—>B) (h: B—> C)
(y: (x : A) = Path C (h (f x)) (h (g x)))
: (z : coeq ABf g) —> C
:= split { inC x —> h x | glueC x@ i >y x@ i }

Theorem 22. (Computation). For z : coeq ABfg,

coequRec(inC z) = h(x)
coequRec(glueC z Qi) = y(z) Q4

Theorem 23. (Uniqueness). Any two maps hi, hs : coeq ABfg — C are ho-

motopic if they agree on inC and glueC, i.e., if hy(inC z) = ho(inC z) for all

x : B and hq(glueC a) = ha(glueC a) for all a : A.

Example 3. (Coequalizer as Subspace) The coequalizer coeq AB fg represents
the subspace of B, where f(a) = g(a). For example, if A= B =R and f(z) =
22, g(z) = z, the coequalizer captures the points where 2% = z, i.e., {0,1}.

16

Path Coequalizer

The path coequalizer is a higher inductive type that generalizes the co-
equalizer to handle pairs of paths in B. Given a map p : A — (by,bs : B) %
(Pathp(b1,b2)) x (Pathg(b1,bs)), it constructs a type where elements of A gen-
erate pairs of paths between points in B, with paths connecting the endpoints
of these paths.

Definition 28. (Formation). For types A, B : U and a map p : A — (b1,bs :
B) x (b = ba) x (by = ba), there exists a path coequalizer Coeq_(A, B,p) : U.

Definition 29. (Constructors). The path coequalizer is generated by the fol-
lowing higher inductive compositional structure:

Coeay. - P # B = Coeq(4, B,p)
=7\ glueP : (a: A) - inP(p(a).2.2.1@0) = inP(p(a).2.2.201)

data Coeq—= (A B: U) (p : A—> X (bl b2: B), bl = b2 x bl = b2)
— inP (b: B)

| glueP (a:A) <i> [(i=0) — inP ((p a). 1

(i=1) — inP ((p a).2.2.2

Theorem 24. (Elimination). For a type C : U, map h : B — C, and a family
of paths y : (a : A) — h(p(a).2.2.1@Q0) = h(p(a).2.2.2Q@1), there exists a map
Ind-Coequ_ : Coeq_ (A, B,p) — C, such that:

{coeunRec(inP(b))

= h(b)
coequPRec(glueP(a, 1))

= y(a7 Z)

def Ind—Coequ= (A B C : U)
(p : A—> X (bl b2: B) (x: Path B bl b2), Path B bl b2)
(h: B—>C) (y: (a : A) —> Path C (h (((p a).2.2.1) @ 0)) (h (((p a).2.2.2) @ 1)))
: (z : coeqP ABp) > C
:= split { inP b —> h b | glueP a @i >y a@i }

Theorem 25. (Computation). For z : coeqP ABp,

coequPRec(inP b) = h(b)
coequPRec(glueP a @i) = y(a) Q1

Theorem 26. (Uniqueness). Any two maps hy, ho : coeqP ABp — C are ho-

motopic if they agree on inP and glueP, i.e., if hy(inP b) = ho(inP b) for all
b: B and hq(glueP a) = ha(glueP a) for all a : A.

17

2.12 K(G,n)

Eilenberg-MacLane spaces K (G, n) have a single non-trivial homotopy group
Tn(K(G,n)) = G. They are defined using truncations and suspensions.

Definition 30. (K(G,n)) For an abelian group G : abgroup, the type KGn(QG) :
nat — U.

n = 0 ~» discreteTopology(G)

K(G =
(Gm) {n > 1 e |2 HEKT(G1,G.2.1)) |

def KGn (G: abgroup) : N —> U
:= split { zero —> discreteTopology G
succ n —> nTrunc (X (K1’ (G.1,G.2.1)) n) (succ n)

}
Theorem 27. (Elimination KGn) For n > 1, atype B : U with isNGroupoid(B, succ n),

and a map f : suspension(K1'G) — B, there exists reckgn : KGnG(succ n) —
B, defined via nTruncRec.

18

2.13 Localization

Localization constructs an F-local type from a type X, with respect to a
family of maps F : S(a) — T'(a).

Definition 31. (Localization Modality) For a family of maps F4 : S(a) — T'(a),
the F-localization L57(X) : U.

center : X — Lp, (X)
ext(a: A) = (S(a) » Lp, (X)) : T(a) = Lp, (X)
isExt(a: A)(f: S(a) = Lp, (X)) = (s:S5(a)) : ext(a, f, F(a,s)) = f(s)
extEq(a: A)(g,h:T(a) = Lp, (X))
Lp(X) = (p:(s:5(a)) = g(F(a,s)) = h(F(a,s)))
(t:T(a)):g(t) = h(t)
isExtEq: (a: A)(g,h: T(a) = Lr, (X))
(p:(s:5(a)) = g(F(a,s)) = h(F(a,s)))
(s:S5(a)) : extEq(a, g, h,p, F(a,s) = p(s)

data Localize (A X: U) (ST: A—>1U) (F : (x:A) —> S x —> T x)
= center (x: X)
| ext (a: A) (f: S a —> Localize AX S TF) (t: T a)
| isExt (a: A) (f: S a —> Localize AX S TTF) (s: S a) <i>
[(i=0) — ext a f (F as) , (i=1]) —> f s |
| extEq (a: A) (g h: T a —> Localize AX S T F)
(p: (s : S a) — Path (Localize AXSTF) (g (Fas)) (h (Fas)))
(t : Ta) <i> [(i=0) > g t , (i=1) —> h t |
isExtEq (a: A) (g h : T a — Localize AX S TF)
(p: (s : S a) — Path (T a —> Localize AXSTF) (g (Fas)) (h (Fas)))
(s : S a) <i> | (i=0) —> extEq a g hp (Fas) , (i=l) —> p s |

Theorem 28. (Localization Induction) For any P : llx.yLp, (X) — U with
{n,r, s}, satisfying coherence conditions, there exists ¢ : II,. Ly (x)P(x), such
that 7 - centerx = n.

Conclusion

HITs directly encode CW-complexes in HoTT, bridging topology and type
theory. They enable the analysis and manipulation of homotopical types.

19

Jliteparypa

(1]

2]

3]

4]

5]

(6]

7]

The Univalent Foundations Program, Homotopy Type Theory: Univalent
Foundations of Mathematics, IAS, 2013.

C. Cohen, T. Coquand, S. Huber, A. Mortberg, Cubical Type Theory, Journal
of Automated Reasoning, 2018.

A. Mortberg et al., Agda Cubical Library, https://github.com/agda/
cubicall 2023.

M. Shulman, Higher Inductive Types in HoTT, https://arxiv.org/abs/
1705.07088, 2017.

J. D. Christensen, M. Opie, E. Rijke, L. Scoccola, Localization in Homotopy
Type Theory, https://arxiv.org/pdf/1807.04155.pdf, 2018.

E. Rijke, M. Shulman, B. Spitters, Modalities in Homotopy Type Theory,
https://arxiv.org/pdf/1706.07526v6.pdf, 2017.

M. Riley, E. Finster, D. R. Licata, Synthetic Spectra via a Monadic and
Comonadic Modality, https://arxiv.org/pdf/2102.04099.pdf, 2021.

20

https://github.com/agda/cubical
https://github.com/agda/cubical
https://arxiv.org/abs/1705.07088
https://arxiv.org/abs/1705.07088
https://arxiv.org/pdf/1807.04155.pdf
https://arxiv.org/pdf/1706.07526v6.pdf
https://arxiv.org/pdf/2102.04099.pdf

	CW-Complexes
	Introduction: Countable Constructors
	Motivation: Higher Inductive Types
	Metatheory: Cohesive Topoi
	Geometric Proofs
	Flat Proofs
	Sharp Proofs
	Bose Proofs
	Fermi Proofs
	Linear Proofs

	Higher Inductive Types
	Suspension
	Pushout
	Spheres
	Hub and Spokes
	Truncation
	Quotients
	Wedge
	Smash Product
	Join
	Colimit
	Coequalizers
	K(G,n)
	Localization

