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CW-complexes are central to both homotopy theory and homotopy
type theory (HoTT) and are encoded in cubical theorem-proving systems
as higher inductive types (HIT), similar to recursive trees for (co)inductive
types. We explore the basic primitives of homotopy theory, which are
considered as a foundational basis in theorem-proving systems.
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1 CW-Complexes

CW-complexes are spaces constructed by attaching cells of various dimen-
sions. In HoT'T, they are encoded as higher inductive types (HIT), where cells
are constructors for points and paths.

Definition 1. (Cell Attachment). The attachment of an n-cell to a space X
along f : S" ! = X is a pushout:

st I x

L |

D —2— X Uy D"

Here, ¢ : S"~! < D™ is the boundary inclusion, and X Uy D™ is the pushout
that attaches an n-cell to X via f. The result depends on the homotopy class

of f.

Definition 2. (CW-Complex). A CW-complex is a space X, constructed in-
ductively by attaching cells, with a skeletal filtration:

e (—1)-skeleton: X_; = @.

e For n > 0, the n-skeleton X,, is obtained by attaching n-cells to X, .
For indices J,, and maps {f; : S"~! — X,,_1};e,., X, is the pushout:

jes, S"7 1L, Xn-1

.

g,
s, D" ——— Xn
where [ [, S"7', [1;c,, D™ are disjoint unions, and i, : X,,—1 = X, is
the inclusion.
e X is the colimit:
g=X_129Xg—=>X]1—=...=> X,

where X, is the n-skeleton, and X = colim,,_, - X,. The sequence is the
skeletal filtration.

In HoTT, CW-complexes are higher inductive types (HIT) with constructors
for cells and paths for attachment.



1.1 Introduction: Countable Constructors

Some HITs require an infinite number of constructors for spaces, such as
Eilenberg-MacLane spaces or the infinite sphere S°.
def S : U
:= inductive { base

| loop (n: N) : base = base

}

Challenges include type checking, computation, and expressiveness.
Agda Cubical uses cubical primitives to handle HITs, supporting infinite
constructors via HITs indexed by natural numbers, as colimits.

1.2 Motivation: Higher Inductive Types

HITs in HoTT enable direct encoding of topological spaces, such as CW-
complexes. In homotopy theory, spaces are constructed by attaching cells via
attaching maps. HoTT views types as spaces, elements as points, and equalities
as paths, making HITs a natural choice. Standard inductive types cannot cap-
ture higher homotopies, but HITs allow constructors for points and paths. For
example, the circle S (Definition 2) has a base point and a loop, encoding its
fundamental group Z. HITs avoid the use of multiple quotient spaces, preserving
the synthetic nature of HoTT. In cubical type theory, paths are intervals (e.g.,
< ¢ >) with computational content, unlike propositional equalities, enabling
efficient type checking in tools such as Agda Cubical.

1.3 Metatheory: Cohesive Topoi

1.3.1 Geometric Proofs

RASH&
For differential geometry, type theory incorporates primitive axioms of categor-
ical meta-theoretical models of three Schreiber-Shulman functors: infinitesimal
neighborhood (<), reduced modality (), and infinitesimal discrete neighbor-
hood (&).
1.3.2 Flat Proofs
1.3.3 Sharp Proofs
1.3.4 Bose Proofs
1.3.5 Fermi Proofs

1.3.6 Linear Proofs
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For engineering applications (e.g., Milner’s m-calculus, quantum computing)
and linear type theory, type theory embeds linear proofs based on the adjunction
of the tensor and linear function spaces: (A ® B) —0 A ~ A — (B — (),
represented in a symmetric monoidal category D for a functor [A, B] as: D(A®

B,C) ~D(4,[B,C]).

2 Higher Inductive Types

CW-complexes are central to HoTT and appear in cubical type checkers
as HITs. Unlike inductive types (recursive trees), HITs encode CW-complexes,
capturing points (0-cells) and higher paths (n-cells). The definition of an HIT
specifies a CW-complex through cubical composition, an initial algebra in the
cubical model.



2.1 Suspension

The suspension ¥ A of a type A is a higher inductive type that constructs a
new type by adding two points, called poles, and paths connecting each point
of A to these poles. It is a fundamental construction in homotopy theory, often
used to shift homotopy groups, e.g., obtaining S"*! from S™.

Definition 3. (Formation). For any type A : U, there exists a suspension type
YA U.

Definition 4. (Constructors). For a type A : U, the suspension YA : U is
generated by the following higher inductive compositional structure:

north
Y := ( south
merid : (a : A) — north = south
def ¥ (A: U) : U
:= inductive north

{
| south

| merid (a: A) : north = south
}

Theorem 1. (Elimination). For a family of types B : ¥A — U, points n :
B(north), s : B(south), and a family of dependent paths

m : II(a : A), PathOver(B, merid(a),n, s),
there exists a dependent map Indsa : (z: £A) — B(z), such that:

Inds 4 (north) =n
Inds 4 (south) = s
Indy 4 (merid(a,)) = m(a, 1)

def PathOver (B: ¥ A —> U) (a: A) (n: B north) (s: B south) : U
:= PathP (A i , B (merid a @ i)) n s

def IndsA (A: U) (B: ¥ A—>U) (n: B north) (s: B south)
(m: (a: A) — PathOver B (merid a) n s) : (x: ¥ A) —> B x
:= split { north —> n | south —> s | merid a @i —>ma @ i }

Theorem 2. (Computation).
Indsy A(north) = nInds A(south) = sIndy, A(merid(a, 1)) = m(a, )

)
def -3 (A: U) (B: XA — U) (n: B north) (s: B south)
(m: (a: A) — PathOver B (merid a) n s) (x: X A)
: Path (B x) (I ABn s m x)
split { north —> n | south —> s | merid a @ i —>ma @ i }

Theorem 3. (Uniqueness). Any two maps hq, hs : (z : ¥A) — B(z) are homo-
topic if they agree on north, south, and merid, i.e., if hj(north) = hy(north),
hi(south) = ha(south), and hq(merid a) = ho(merid a) for all a : A.



2.2 Pushout

The pushout (amalgamation) is a higher inductive type that constructs a
type by gluing two types A and B along a common type C via maps f: C — A
and g : C — B. It is a fundamental construction in homotopy theory, used to
model cell attachment and cofibrant objects, generalizing the topological notion
of a pushout.

Definition 5. (Formation). For types A,B,C : U and maps f : C — A,
g : C — B, there exists a pushout U(A, B,C, f,g) : U

Definition 6. (Constructors). The pushout is generated by the following higher
inductive compositional structure:

01: A—=U(A,B,C, f,9)
U:=<poy: B—=UAB,C,f,9)
po3 : (c: C) — poi(f(c)) = poz2(g(c))

def U (ABC: U) (f: C—>A) (g: C—>B) : U
:= inductive { poi (a: A)
| poz (b: B)
| pos (c: C) : poi(f(c)) = poa(g(c))

Theorem 4. (Elimination). For a type D : U, maps u: A — D, v: B — D,
and a family of paths p : (¢ : C) — u(f(c)) = v(g(c)), there exists a map
Ind, : U(A, B,C, f,g) — D, such that:

Ind,(poz(d))

def PathOver (A B C : U) (
(b:uUABCTf g—U)
(¢ : C) (u: D (po1 (f
:= PathP (A i, D (po3 c i

def Indy : (ABC : U) (f : C—> A) (g : C— B)

(bD:UABCTf g — U

(uw: (a: A) = D (por a))

(v.: (b : B) - D (po2 b))

(p (¢ : C) — PathOver D ¢ (u (f ¢)) (v (g ¢)))
(x t UABCTf g) - Dx

::spllt{polaﬁua|pozb%vb|p03c@1~>pc@1}

Theorem 5. (Computation). For = : U(A, B,C, f, g),



Theorem 6. (Uniqueness). Any two maps u,v : U(A, B,C, f,g) — D are ho-
motopic if they agree on poy, poy, and pos, i.e., if u(po;(a)) = v(po;(a)) for
all a : A, u(poy(b)) = v(poy (b)) for all b: B, and u(pos(c)) = v(pos(c)) for all
c:C.

Example 1. (Cell Attachment) The pushout models the attachment of an n-
cell to a space X. Given f : S" ! — X and inclusion g : S"~! — D", the
pushout L(X, D™, 8"~ f g) is the space X Uy D", attaching an n-disk to X
along f.

st L x

s |

D" — X Uy D"

2.3 Spheres

Spheres are higher inductive types with higher-dimensional paths, represent-
ing fundamental topological spaces.

Definition 7. (Pointed n-Spheres) The n-sphere S™ is defined recursively as a
type in the universe U using general recursion over dimensions:

point : S™,
S™ := q surface : < iy,...ip, > [ ({1 = 0) — point, ({1 = 1) — point, ...
(in, = 0) — point, (i, = 1) — point |
Definition 8. (n-Spheres via Suspension) The n-sphere S™ is defined recur-

sively as a type in the universe U using general recursion over natural numbers
N. For each n € N, the type S™ : U is defined as:

o [50=2
T gntl — Z(sn).

def sphere : N — U := N-iter U 2 X
This iterative definition applies the suspension functor ¥ to the base type 2

(0-sphere) n times to obtain S™.

Example 2. (Sphere as CW-Complex) The n-sphere S™ can be constructed as
a CW-complex with one 0O-cell and one n-cell:

Xo = {base}, one point
X = Xg for 0 < k < n, no additional cells
X, : Attachment of an n-cell to X,,_; = {base} along f: S"~! — {base}

The constructor cell attaches the boundary of the m-cell to the base point,
yielding the type S™.



2.4 Hub and Spokes

The hub and spokes construction ® defines an n-truncation, ensuring that
the type has no non-trivial homotopy groups above dimension n. It models the
type as a CW-complex with a hub (central point) and spokes (paths to points).

Definition 9. (Formation). For types S, A : U, there exists a hub and spokes
type ® (S, A) : U.

Definition 10. (Constructors). The hub and spokes type is freely generated by
the following higher inductive compositional structure:

base: A — @ (S, A)
®:=<chub: (S =0 (S,4)) =& (S,4)
spoke: (f: S — ® (S,A4)) = (s: 5) = hub(f) = f(s)

def ® (S A: U) : U

:= inductive { base (x: A)

| hub (f: S —> ©® S A)

| spoke (f: S—> ® S A) (s:S) : hub f = f s
}

Theorem 7. (Elimination). For a family of types P : HubSpokes S A — U,
maps pbase : (r : A) — P(basex), phub : (f : S — HubSpokesS A) —
P(hub f), and a family of paths pspoke : (f : S — HubSpokesS A) — (s :
S) — PathP (< i > P(spoke fs@34)) (phub f) (P(fs)), there exists a map
hubSpokesInd : (z : HubSpokes S A) — P(z), such that:

Indg (base z) = pbase z
Indg (hub f) = phub f
Indg (spoke f s @) = pspoke f s @4



2.5 Truncation
Set Truncation

Definition 11. (Formation). Set truncation (0-truncation), denoted ||A||o, en-
sures that the type is a set, with homotopy groups vanishing above dimension
0.

Definition 12. (Constructors). For A : U, ||A|lo : U is defined by the following
higher inductive compositional structure:

1 llo = inc: A — ||A]lo
—o- squash : (a,b: ||Allo) = (p,g:a=b) > p=gq

def || _Jlo (A: U) : U
:= inductive { inc (a: A)
| squash (a b: ||Allo) (p q: Path (||Allo) a b
<i j> | (i 0) >p@j, (i 1) —> q
(j =0) —> a, (j=1) —>b

)
@j7
]

}

Theorem 8. (Elimination ||A|g) For a set B : U (i.e., isSet(B)), and a map
f:+ A — B, there exists setTruncRec : || Ao — B, such that Ind) 4, (inc(a)) =

f(a).

Groupoid Truncation

Definition 13. (Formation). Groupoid truncation (1-truncation), denoted || A||1,
ensures that the type is a 1-groupoid, with homotopy groups vanishing above
dimension 1.

Definition 14. (Constructors). For A : U, ||A|l1 : U is defined by the following
higher inductive compositional structure:

Il = inc: A— ||Allx
- squash : (a,b: ||A|1) = (p,g:a=b) = (r,s:p=q) > r=s

def || |1 (A: U) : U
:= inductive { inc (a: A)
| squash (a b: A1) (p a: Path (JAl1) a b)
(r s: Path (Path (JJA]l1) a b) p q) <i j k>

[(i=0) >r@j@k, (i=1)->s@j @k,
(j =0) —>pak, (j =1) > qQKk,
(k= 0) > a, (k=1) > b |

}

Theorem 9. (Elimination ||Al|;) For a 1-groupoid B : U (i.e., isGroupoid(B)),
and amap f : A — B, there exists Ind| 4, : [|Al|1 = B, such that Ind 4, (inc(a)) =
f(a).



2.6  Quotients
Set Quotient Spaces

Quotient spaces are a powerful computational tool in type theory, embedded
in the core of Lean.

Definition 15. (Formation). Set quotient spaces construct a type A, quotiented
by a relation R: A — A — U, ensuring that the result is a set.

Definition 16. (Constructors). For atype A : U and arelation R: A - A — U,
the set quotient space A/R : U is freely generated by the following higher
inductive compositional structure:

quot: A — A/R
A/R := {ident : (a,b: A) — R(a,b) — quot(a) = quot(b)
trunc : (a,b: A/R) = (p,q:a=b) > p=q

def / (A: U) (Rt A—>A-—>10U) : U

:= inductive { quot (a: A)
| ident (a b: A) (r: R a b) : quot(a) = quot(b)
| trunc (a b / AR) (p q Path (/ AR) a b)
<t j> [ (i=0 —>p@j, (i=1) ->q0j,
(3 =0) > a, (=1 —>b]

}

Theorem 10. (Elimination). For a family of types B : A/R — U with isSet(Bzx),
and maps f : (z : A) = B(quot(x)), g : (a,b: A) = (r : R(a,b)) — PathP(<
i > B(ident(a,b,7) @ i))(f(a))(f(b)), there exists Indy, g : II(x : A/R), B(x),
such that Ind 4/ r(quot(a)) = f(a).

Groupoid Quotient Spaces

Definition 17. (Formation). Groupoid quotient spaces extend set quotient
spaces to produce a 1-groupoid, including constructors for higher paths. Groupoid
quotient spaces construct a type A, quotiented by a relation R: A — A — U,
ensuring that the result is a groupoid.

Definition 18. (Constructors). For a type A : U and arelation R: A — A — U,
the groupoid quotient space A//R : U includes constructors for points, paths,
and higher paths, ensuring a 1-groupoid structure.

10



2.7 Wedge

The wedge of two pointed types A and B, denoted A V B, is a higher in-
ductive type representing the union of A and B with identified base points.
Topologically, it corresponds to A x {yo} U {zo} x B, where z¢ and y, are the
base points of A and B, respectively.

Definition 19. (Formation). For pointed types A, B : pointed, the wedge AVB :
Uu.

Definition 20. (Constructors). The wedge is generated by the following higher
inductive compositional structure:

winl: A.1 > AV B
V=< winr: B.1— AV B
wglue : winl(A.2) = winr(B.2)

def Vv (A : pointed) (B : pointed) : U
:= inductive { winl (a : A.1)
| winr (b : B.1)
| wglue : winl(A.2) = winr(B.2)

}

Theorem 11. (Elimination). For a type P : AV BU, maps [ : A1l — C,
g: B.1 = C, and a path p : PathOverlue(P, f(A.2), g(B.2)), there exists a map
Indy : AV B — C, such that:

Ind(winl(a)) = f(a)
Ind(winr(b)) = g(b)
Ind(wglue(z)) = p(x)

def PathOverGlue : (P : A v B U)
(p : P (inl (A.2))) (q : P (inr (B.2))) : U
:= PathP (A i - P (wglue i)) p ¢q

def Indy (A B : pointed) (C : U) (f : A.1 —>C) (g : B.1 —> C)
(p : Path C (f A.2) (g B.2))
: AvB-—>C
:= split { winl a —> f a | winr b —> g b | wglue @ x —> p @ x }

Theorem 12. (Computation). For z : Wedge AB,

Indy (winl a) = f(a)
Ind, (winr b) = ¢(b)
Indy (wglue Qz) = pQx
Theorem 13. (Uniqueness). Any two maps h1, he : Wedge AB — C' are homo-

topic if they agree on winl, winr, and wglue, i.e., if hy(winl a) = ho(winl a) for
all @ : A.1, hy(winr b) = he(winr b) for all b: B.1, and hq(wglue) = ha(wglue).

11



2.8 Smash Product

The smash product of two pointed types A and B, denoted A A B, is a
higher inductive type that quotients the product A x B by the pushout A U B.
It represents the space A x B/(A x {yo}U{xo} x B), collapsing the wedge to a
single point.

Definition 21. (Formation). For pointed types A, B : pointed, the smash prod-
uct ANB:U.

Definition 22. (Constructors). The smash product is generated by the follow-
ing higher inductive compositional structure:

basel : AN B

baser : AN B
ANB:=<proj(z:Al)(y: B1l): AAB

gluel(a : A.2) : proj(a, B.2) = basel

gluer(b : B.2) : proj(A.2,b) = baser

def A (A : pointed) (B : pointed) : U
:= inductive { basel
| baser

| proj (a : A.1) (b : B.1)

| gluel (a : A.2) : proj(a,B.2) = basel
| gluer (a : B.2) : proj(A.2,b) = baser
}

Theorem 14. (Elimination). For a family of types P : Smash A B — U, points
pbasel : P(basel), pbaser : P(baser), maps pproj : (z : A1) = (y : B.1) —
P (projxy), and a family of paths pgluel : (a : A.1) — pproj(a, B.2) = pbasel,
pgluer : (b : B.1) — pproj(A.2,b) = pbaser, there exists a map Inds : (z :
AN B) — P(z), such that:

Ind, (basel) = pbasel

Ind, (baser) = pbaser

Indx (projzy) = pprojzy
Indx (gluela @4) = pgluela @1
Inda (gluer b@i) = pgluerb @+

def Indn (A B : pointed) (P : A A B — U)
(pbasel : P basel) (pbaser : P baser)
(pproj : (x : A1) —> (y : B.1) = P (proj x y))
(pgluel : (a : A.1) —> PathP (<i> P (gluel a @ i)) (pproj a B.2) pbasel)
(pgluer : (b : B.1) — PathP (<i> P (gluer b @ i)) (pproj A.2 b) pbaser)
: (z : AANB) >P z
:= split { basel —> pbasel | baser —> pbaser | proj x y —> pproj x y
| gluel a @ i —> pgluel a @ i | gluer b @ i —> pgluer b @ i }

12



Theorem 15. (Computation). For a family of types P : A A B — U, points
pbasel : P(basel), pbaser : P(baser), map pproj : (z : A1) —» (y : B.1) —
P(projxy), and families of paths pgluel : (a : A.1) — PathP (< ¢ > P(gluela @ 1)) (pproja B.2) pbasel,
pgluer : (b : B.1) — PathP (< i > P(gluerb@i)) (pproj A.2b) pbaser, the map
Inds : (2 : AA B) — P(z) satisfies all equations for all variants of the predicate
P:

Inda (basel) = pbasel

Ind, (baser) = pbaser

Inda (projzy) = pprojzy

Inda (gluela @) = pgluela @4

Inda (gluer b@i) = pgluerb @+

Theorem 16. (Uniqueness). For a family of types P : AA B — U, and
maps hi,he : (z : AN B) — P(z), if there exist paths epasel : h1(basel) =
ho(basel), epaser : hi(baser) = ho(baser), eproj @ (z : A1) = (y : B.1) —
hi(projxy) = ha(projzy), egiuel : (a : A.1) — PathP (< i > hi(gluela @i) =
ha(gluela @ 1)) (eproj @ B.2) ebasels €gluer : (b : B.1) — PathP (< i > hi(gluerb@i) =
ho(gluer b@ 7)) (epmJA 2b) epaser; then hy = ho, i.e., there exists a path (z

AN B) = hi(2) = ha(2).

13



2.9 Join

The join of two types A and B, denoted A V B, is a higher inductive type
that constructs a type by joining each point of A to each point of B via a
path. Topologically, it corresponds to the join of spaces, forming a space that
interpolates between A and B.

Definition 23. (Formation). For types A, B : U, the join A* B : U.

Definition 24. (Constructors). The join is generated by the following higher
inductive compositional structure:

joinl: A— AV B
AV B:=<joinr: B— AV B
join(a : A)(b: B) : joinl(a) = joinr(b)

def v (A : U) (B:U) :U
= 1nduct1ve { joinl (a: A)
| joinr (b: B)
J join (a: A) (b: B) : joinl(a) = joinr(b)

Theorem 17. (Elimination). For a type C : Y, maps f : A = C, g: B — C,
and a family of paths h: (a: A) — (b: B) — f(a) = g(b), there exists a map
Indy : AV B — C, such that:

Indy, (joinl(a)) = f(a)
Indy, (joinr (b)) = g(b)
Indy (join(a, b,%)) = h(a,b, )

def Indy (ABC : U) (f : A—>C) (g : — C)
(h : (a :A) = (b : B) = Path C ( a) (g b))
: AvB-—>C

:= split { joinl a —> f a
| joinr b —> g b
| join ab@i-—>habai
}

Theorem 18. (Computation). For all z: AV B, and predicate P, the rules of
Ind, hold for all parameters of the predicate P.

Theorem 19. (Uniqueness). Any two maps hy, hy : AV B — C are homotopic
if they agree on joinl, joinr, and join.

14



2.10 Colimit

Colimits construct the limit of a sequence of types, connected by maps, e.g.,
propositional truncations.

Definition 25. (Colimit) For a sequence of types A : nat — U and maps
f:(n:N)— An — A(succ(n)), the colimit type colimit(A, f) : U.

colim {ix : (n:nat) — An — colimit(A4, f)
" |ex:(n:nat) = (a: A(n)) — ix(succ(n), f(n,a)) = ix(n, a)

def colimit (A : nat —> U) (f : (n : nat) —> A n —> A (succ n)) : U
:= inductive { ix (n : nat) (x: A n)
| gx (n : nat) (a: A n)
<i> [ (i=0) — ix (succ n) (f n a),
(i=1) —> ix n a |
}

Theorem 20. (Elimination colimit) For a type P : colimit Af — U, with
p: (n:nat) = (x : An) = P(ix(n,z)) and ¢ : (n : nat) = (a : An) —
PathP ((i) P(gx(n, a)@7))(p(succ n)(fna))(pna), there exists i : I;.colimit 45P(z),
such that i(ix(n,z)) = pnz.

15



2.11 Coequalizers
Coequalizer

The coequalizer of two maps f,g: A — B is a higher inductive type (HIT)
that constructs a type consisting of elements in B, where f and g agree, along
with paths ensuring this equality. It is a fundamental construction in homotopy
theory, capturing the subspace of B where f(a) = g(a) for a : A.

Definition 26. (Formation). For types A, B : U and maps f,g : A — B, the
coequalizer coeq ABfg : U.

Definition 27. (Constructors). The coequalizer is generated by the following
higher inductive compositional structure:

Coeq — {inC : B — Coeq(A, B, f,9)
T N elueC : (a: A) - inC(f(a)) = inC(g(a))

def Coeq (A B: U) (f g: A—B) : U
:= inductive { inC (b: B)
| glueC (a: A) : inC (f a) = inC (g a)

Theorem 21. (Elimination). For a type C : U, map h : B — C, and a family
of paths y : (x : A) — Pathe(h(fx),h(gz)), there exists a map coequRec :
coeq ABfg — C, such that:

coequRec(inC(z)) = h(zx)
coequRec(glueC(z, 1)) = y(z,1)

def coequRec (ABC : U) (f g : A—>B) (h: B—> C)
(y: (x : A) = Path C (h (f x)) (h (g x)))
: (z : coeq ABf g) —> C
:= split { inC x —> h x | glueC x@ i >y x@ i }

Theorem 22. (Computation). For z : coeq ABfg,

coequRec(inC z) = h(x)
coequRec(glueC z Qi) = y(z) Q4

Theorem 23. (Uniqueness). Any two maps hi, hs : coeq ABfg — C are ho-

motopic if they agree on inC and glueC, i.e., if hy(inC z) = ho(inC z) for all

x : B and hq(glueC a) = ha(glueC a) for all a : A.

Example 3. (Coequalizer as Subspace) The coequalizer coeq AB fg represents
the subspace of B, where f(a) = g(a). For example, if A= B =R and f(z) =
22, g(z) = z, the coequalizer captures the points where 2% = z, i.e., {0,1}.
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Path Coequalizer

The path coequalizer is a higher inductive type that generalizes the co-
equalizer to handle pairs of paths in B. Given a map p : A — (by,bs : B) %
(Pathp(b1,b2)) x (Pathg(b1,bs)), it constructs a type where elements of A gen-
erate pairs of paths between points in B, with paths connecting the endpoints
of these paths.

Definition 28. (Formation). For types A, B : U and a map p : A — (b1,bs :
B) x (b = ba) x (by = ba), there exists a path coequalizer Coeq_(A, B,p) : U.

Definition 29. (Constructors). The path coequalizer is generated by the fol-
lowing higher inductive compositional structure:

Coeay. - P # B = Coeq(4, B,p)
=7\ glueP : (a: A) - inP(p(a).2.2.1@0) = inP(p(a).2.2.201)

data Coeq—= (A B: U) (p : A—> X (bl b2: B), bl = b2 x bl = b2)
— inP (b: B)

| glueP (a:A) <i> [(i=0) — inP ((p a). 1

(i=1) — inP ((p a).2.2.2

Theorem 24. (Elimination). For a type C : U, map h : B — C, and a family
of paths y : (a : A) — h(p(a).2.2.1@Q0) = h(p(a).2.2.2Q@1), there exists a map
Ind-Coequ_ : Coeq_ (A, B,p) — C, such that:

{coeunRec(inP(b))

= h(b)
coequPRec(glueP(a, 1))

= y(a7 Z)

def Ind—Coequ= (A B C : U)
(p : A—> X (bl b2: B) (x: Path B bl b2), Path B bl b2)
(h: B—>C) (y: (a : A) —> Path C (h (((p a).2.2.1) @ 0)) (h (((p a).2.2.2) @ 1)))
: (z : coeqP ABp) > C
:= split { inP b —> h b | glueP a @i >y a@i }

Theorem 25. (Computation). For z : coeqP ABp,

coequPRec(inP b) = h(b)
coequPRec(glueP a @i) = y(a) Q1

Theorem 26. (Uniqueness). Any two maps hy, ho : coeqP ABp — C are ho-

motopic if they agree on inP and glueP, i.e., if hy(inP b) = ho(inP b) for all
b: B and hq(glueP a) = ha(glueP a) for all a : A.
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2.12 K(G,n)

Eilenberg-MacLane spaces K (G, n) have a single non-trivial homotopy group
Tn(K(G,n)) = G. They are defined using truncations and suspensions.

Definition 30. (K(G,n)) For an abelian group G : abgroup, the type KGn(QG) :
nat — U.

n = 0 ~» discreteTopology(G)

K(G =
(Gm) {n > 1 e |2 HEKT(G1,G.2.1)) |

def KGn (G: abgroup) : N —> U
:= split { zero —> discreteTopology G
succ n —> nTrunc (X (K1’ (G.1,G.2.1)) n) (succ n)

}
Theorem 27. (Elimination KGn) For n > 1, atype B : U with isNGroupoid(B, succ n),

and a map f : suspension(K1'G) — B, there exists reckgn : KGnG(succ n) —
B, defined via nTruncRec.
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2.13 Localization

Localization constructs an F-local type from a type X, with respect to a
family of maps F : S(a) — T'(a).

Definition 31. (Localization Modality) For a family of maps F4 : S(a) — T'(a),
the F-localization L57(X) : U.

center : X — Lp, (X)
ext(a: A) = (S(a) » Lp, (X)) : T(a) = Lp, (X)
isExt(a: A)(f: S(a) = Lp, (X)) = (s:S5(a)) : ext(a, f, F(a,s)) = f(s)
extEq(a: A)(g,h:T(a) = Lp, (X))
Lp(X) = (p:(s:5(a)) = g(F(a,s)) = h(F(a,s)))
(t:T(a)):g(t) = h(t)
isExtEq: (a: A)(g,h: T(a) = Lr, (X))
(p:(s:5(a)) = g(F(a,s)) = h(F(a,s)))
(s:S5(a)) : extEq(a, g, h,p, F(a,s) = p(s)

data Localize (A X: U) (ST: A—>1U) (F : (x:A) —> S x —> T x)
= center (x: X)
| ext (a: A) (f: S a —> Localize AX S TF) (t: T a)
| isExt (a: A) (f: S a —> Localize AX S TTF) (s: S a) <i>
[ (i=0) — ext a f (F as) , (i=1]) —> f s |
| extEq (a: A) (g h: T a —> Localize AX S T F)
(p: (s : S a) — Path (Localize AXSTF) (g (Fas)) (h (Fas)))
(t : Ta) <i> [ (i=0) > g t , (i=1) —> h t |
isExtEq (a: A) (g h : T a — Localize AX S TF)
(p: (s : S a) — Path (T a —> Localize AXSTF) (g (Fas)) (h (Fas)))
(s : S a) <i> | (i=0) —> extEq a g hp (Fas) , (i=l) —> p s |

Theorem 28. (Localization Induction) For any P : llx.yLp, (X) — U with
{n,r, s}, satisfying coherence conditions, there exists ¢ : II,. Ly ( x)P(x), such
that 7 - centerx = n.

Conclusion

HITs directly encode CW-complexes in HoTT, bridging topology and type
theory. They enable the analysis and manipulation of homotopical types.
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