
Issue I: Martin-Löf Type Theory

Maksym Sokhatskyi

National Technical University of Ukraine
Igor Sikorsky Kyiv Polytechnical Institute

June 1, 2025

Abstract

Martin-Löf Type Theory (MLTT), introduced by Per Martin-Löf in
1972, is a cornerstone of constructive mathematics, providing a founda-
tion for formalizing mathematical proofs and programming languages. Its
1973 variant, MLTT-73, incorporates dependent types (Π, Σ) and iden-
tity types (Id), with the J eliminator as a key construct for reasoning
about equality. Historically, internalizing MLTT in a type checker while
constructively proving the J eliminator has been challenging due to limita-
tions in pure functional systems. This article presents a canonical formal-
ization of MLTT-73 and its internalization (without η-rule for identity
types due to groupoid interpretation) in Per, a dependent type theory
language equipped with cubical type primitives. Using presented type
theory, we constructively prove induction and computation MLTT-73 in-
ference rules, including the J eliminator, and demonstrate suitability as a
robust foundation for mathematical languages.

Keywords: Martin-Löf Type Theory, Cubical Type Theory.

Contents

1 Interpretations 3
1.1 Type Theory . 3
1.2 Logic . 3
1.3 Category Theory . 4
1.4 Homotopy Theory . 4

2 Dependent Type Theory 5
2.1 Universes (Ui) . 5
2.2 Dependent Product (Π) . 6
2.3 Dependent Sum (Σ) . 10
2.4 Path Space (Ξ) . 12

1

Introduction to MLTT

For decades, type theorists have sought to fully internalize Martin-Löf Type
Theory (MLTT) within a type checker, a task akin to building a self-verifying
blueprint for mathematics.

Introduced by Per Martin-Löf in 1972 [2] MLTT-72 had only Π and Σ types.
In 1973, a variant MLTT-73 with Id types was introduces with countable hier-
archy of universes. In 1975, a variant of MLTT-75 with Π and Σ, Id, +, and
N type was officially introduced [3] including infinite predicative hierarchy of
universes.

Central to MLTT-73 is the J eliminator, a rule that governs how identity
proofs are used, but its constructive derivation has long eluded pure functional
type checkers due to the complexity of equality types. This article addresses
this challenge by presenting a canonical formalization of MLTT-73 and its in-
ternalization in Per, a novel type theory language designed for constructive
proofs.

Leveraging cubical type theory [14], this language incorporates Path types
and universe polymorphism to faithfully embed MLTT-73 rules, achieving a
constructive proof of the J eliminator. This internalization serves as an ultimate
test of a type checker’s robustness, verifying its ability to fuse and full coverage
of introduction and elimination rules through beta and eta equalities.

To make MLTT accessible, we provide intuitive interpretations of its types:
logical (as quantifiers), categorical (as functors), and homotopical (as spaces).
These perspectives highlight MLTT’s role as a bridge between mathematics and
computation. Our work builds on Martin-Löf’s vision of constructive mathemat-
ics, offering a minimal yet powerful framework for mechanized reasoning. We
aim to inspire researchers and practitioners to explore type theory’s potential
in formalizing mathematics and designing reliable software.

Syntax of Per

The BNF consists of: i) telescopes (contexts) and definitions; ii) pure dependent
type theory syntax; iii) identity system; iv) cubical face system; v) module
system. It is slightly based on cubicaltt.

F = module I where L
L = ∅ | import I | de f I T : O := O
T = ∅ | (I : O) T
O = I | U | (O)

| Π (I : O) , O | λ (I : O) , O | O → O | O O
| Ξ O O O O O | ⟨ O ⟩ O | O @ O | transp O O
| 0 | 1 | −O | O ∧ O | O ∨ O | □
| Σ (I : O) , O | O .1 | O .2 | O , O

Here, = (definition), ∅ (empty set), | (vertical bar) — are parts of BNF
language and ⟨, ⟩, (,), :=, ∨, ∧, -, →, 0, 1, @, □, module, import, where,
transp, .1, .2, and , are terminals of the type checker language 1.

1https://github.com/groupoid/per

2

https://github.com/groupoid/per

1 Interpretations

1.1 Type Theory

In MLTT, types are defined by five classes of rules: (1) formation, specifying
the type’s signature; (2) introduction, defining constructors for its elements;
(3) elimination, providing a dependent induction principle; (4) computation
(beta-equality), governing reduction; and (5) uniqueness (eta-equality), ensur-
ing canonical forms, though the latter is absent for identity types in homotopical
settings.

For MLTT-73, we focus on Π (dependent function types), Σ (dependent pair
types), and Id (identity types). MLTT-72 provided the foundational Π and Σ
types, lacking mechanisms for equality, which MLTT-73 introduced via Id types,
originally assuming uniqueness of identity proofs (UIP) in some contexts [3]. In
cubical type theory, Id types are replaced by Path types, defined as functions
from an interval [0, 1], making the J eliminator computationally effective and
supporting constructive proofs [1]. The identity type, introduced in MLTT-73
and refined in [3], is significant for enabling constructive equality reasoning.

Modern homotopical interpretations, pioneered by Hofmann and Streicher
[6], refute UIP, adopting Path types that model equality as paths in a space,
aligning with cubical type theory’s constructive framework [14]. This shift,
integral to MLTT-75, facilitates the internalization of MLTT-73 rules.

Type checkers operate within contexts, binding variables to indexed uni-
verses, built-in types, or user-defined types via de Bruijn indices (to avoid vari-
able capture) or names (for user-friendly proof assistants). These contexts, cen-
tral to MLTT implementations, enable queries about type derivability and code
extraction, forming the core of type checkers. As shown in Table 1 MLTT-75
unifies these constructs across multiple domains.

1.2 Logic

The logical interpretation casts MLTT-75 as a system for intuitionistic higher-
order logic, where types correspond to propositions and terms to proofs, em-
bodying the Curry-Howard correspondence. In this view, a type A represents a
proposition, and a term a : A is a proof of A. The Π-type,

∏
x:A B(x), encodes

universal quantification (∀x : A,B(x)), while the Σ-type,
∑

x:A B(x), represents
existential quantification (∃x : A,B(x)). The identity type, IdA(a, b), captures
propositional equality (a =A b), with the J eliminator providing a constructive
means to reason about equalities.

Each type’s five rules (formation, introduction, elimination, computation,
and uniqueness, except for Id in cubical settings) mirror the structure of logical
inference rules. For instance, the introduction rule for Π constructs a lambda
term (proof of a universal statement), while its elimination rule applies the term
to an argument (using the universal statement).

MLTT-73 is not standalone framework for constructive mathematics but
rather the extended foundational core on top of MLTT-72. Adding 0 (Empty),

3

Type Theory Logic Category Theory Homotopy Theory
A type class object space
isProp A proposition (-1)-truncated object space
a:A program proof generalized element point
B(x) predicate indexed object fibration
b(x) : B(x) conditional proof indexed elements section
0 ⊥ false initial object empty space
1 ⊤ true terminal object singleton
2 boolean subobject classifier S0
A+B A ∨B disjunction coproduct coproduct space
A×B A ∧B conjunction product product space
A → B A ⇒ B internal hom function space∑

x : A,B(x) ∃x:AB(x) dependent sum total space∏
x : A,B(x) ∀x:AB(x) dependent product space of sections

PathA equivalence =A path space object path space AI

quotient equivalence class quotient quotient
W-type induction colimit complex
type of types universe object classifier universe
quantum circuit proof net string diagram

1 (Unit) types allows resulting type system to internalize intuitionistic proposi-
tional logic (IPL), extending further with 2 (Bool) it can encode classical logic
with the rule of excluded middle (CPL) [10].

1.3 Category Theory

The categorical interpretation models MLTT-75 within category theory, where
types are objects, terms are morphisms, and type constructions are functors.
This perspective, formalized by Cartmell and Seely [13], views MLTT-75 with
0, 1, 2 types as a locally cartesian closed category (LCCC) with boolean as sub-
object classifiers forming boolean topoi. Here, Π-types correspond to dependent
products (right adjoints to base change functors), and Σ-types to dependent
sums (left adjoints). The identity type, IdA, is modeled as a path space object,
reflecting equality as a morphism.

For example, given a morphism f : A → B in a category, the Πf functor
maps a dependent type over B to one over A, generalizing function spaces, while
Σf constructs the total space of a fibration.

1.4 Homotopy Theory

The homotopical interpretation, a breakthrough in modern type theory, views
MLTT-73 types as spaces and terms as points, with identity types as paths.
Introduced by Hofmann and Streicher’s groupoid model [6], this perspective
refutes the uniqueness of identity proofs (UIP) in classical MLTT-73, replacing
Id with Path types that model equality as continuous paths in a space. In

4

cubical type theory, Path types are functions from an interval [0, 1] to a type,
enabling constructive proofs of MLTT-73 rules, including the J eliminator.

Here, Π-types represent spaces of sections, Σ-types denote total spaces of
fibrations, and Path types form path spaces (AI). This interpretation connects
MLTT-73 to homotopy theory, where types are ∞-groupoids, and fibrations
(dependent types) are studied geometrically. For instance, a Π-type can be seen
as a trivial fiber bundle, with its introduction rule constructing a section [1].

Set Theory

The set-theoretical interpretation models MLTT-75’s types as sets and terms
as elements, aligning with classical first-order logic. In this view, a type A is a
set, and a term a : A is an element. The Π-type represents a set of functions,
Σ-type a disjoint union of sets, and IdA(a, b) an equality relation. However,
this interpretation is limited, as it cannot capture higher equalities (e.g., paths
between paths) or inductive types directly, due to its 0-truncated nature [1].

2 Dependent Type Theory

2.1 Universes (Ui)

In Martin-Löf Type Theory (MLTT), universes are types that classify other
types, forming a cumulative hierarchy to manage type formation and avoid
paradoxes like Russell’s. MLTT-73 adopts a predicative hierarchy of universes,
denoted Ui for i ∈ N, where each universe Ui is a type in the next universe Ui+1.

This section defines the universe hierarchy constructively, specifying forma-
tion, introduction, and computation rules, and illustrates their encoding in Per.

Definition 1 (Universe Formation). For each natural number i ∈ N, there
exists a universe Ui, which is a type classifying small types at level i. The
formation rule is: Γ ⊢ Ui : Ui+1. Universes are introduced as constructors, with
each Ui inhabiting Ui+1.

de f U (i : Nat) : U (suc i)

Definition 2 (Universe Introduction). A type A belongs to a universe Ui if it
can be derived as a type at level i. For MLTT-73, this includes base types (e.g.,
Π, Σ, Path), user-defined types, and universes Uj for j < i. The introduction
rule is: Γ;A ⊢ A : Ui, where i is the minimal level such that A ∈ Ui. Types like
Π(A,B), Σ(A,B), and Ξ(A, x, y) are explicitly landed in a universe:

de f Pi (A : U i) (B : A −> U i) : U i := Π (x : A) , B x
de f Sigma (A : U i) (B : A −> U i) : U i := Σ (x : A) , B x
de f Path (A : U i) (x y : A) : U i := PathP (< > A) x y

Definition 3 (Cumulative Hierarchy). The universe hierarchy is cumulative,
meaning if A : Ui, then A : Uj for all j > i. This ensures flexibility in type
checking, as types can be lifted to higher universes. This is implicit in the type
checker’s ability to assign types to higher universes when needed.

5

Definition 4 (Predicative Rules). The formation of dependent types (e.g., Π,
Σ) lands in the maximum of the universe levels of its constituents. For example,
for Π-types: Γ ⊢ A : Ui and Γ, x : A ⊢ B(x) : Uj we can derive Γ ⊢ Π(x :
A), B(x) : Umax(i,j) This predicative rule ensures that the universe level reflects
the highest level of the domain or codomain.

de f Leve l (i j : N) (A : U i) (B : A −> U j)
: U (max i j) := Π (x : A) , B x

Similar rules apply to Σ and Path types, ensuring all MLTT-73 types are pred-
icatively landed.

Definition 5 (Definitional Equality). Universes support definitional equality,
where two types A,B : Ui are equal if their normalized forms are identical. This
is crucial for type checking in MLTT-73.

2.2 Dependent Product (Π)

Π is a dependent product type, the generalization of functions. As a function
it can serve the wide range of mathematical constructions as its domain and
codomain, which are in general: objects, types, or spaces; and could have as
its instance: sets, functions, polynomial functors, infinitesimals, ∞-groupoids,
topological ∞-groupoid, CW-complexes, categories, languages, etc.

At this light there could be many interpretation of Π types from different
areas of mathematics. We give here three: i) logical interpretation of Π as
∀ quantifier from higher order logic that forms a ground of type theory; ii)
geomeric intepretation of Π as fiber bundle; iii) categorical interpretation of
functions as functors.

Type-theoretical interpretation

As a logical system dependent type theory could correspond to higher order
logic. However here only type-theoretical model is given completely.

Definition 6 (Π-Formation). Π-types represents the way we create the spaces
of dependent functions f : Π(x : A), B(x) with domain in A and codomain in
type family B : A → U over A.

Π(A,B) : U =def

∏
A:U

∏
B:A→U

∏
x:A

B(x).

de f Pi (A : U) (B : A → U) : U := Π (x : A) , B x

Definition 7 (Π-Introduction). Lambda constructor defines a new lambda
function in the space of dependent functions. It is called lambda abstraction
and displayed as λx.b(x) or x 7→ b(x).

λ(x : A), b(x) : Π(A,B) =def

6

∏
A:U

∏
B:A→U

∏
b:Π(A,B)

λx, bx.

de f lambda (A: U) (B: A → U) (b : Pi A B) : Pi A B := λ (x : A) , b x
de f lam (A B: U) (f : A → B) : A → B := λ (x : A) , f x

When codomain is not dependent on valude from domain the function f :
A → B is studied in System Fω, dependent case in studied in Systen Pω or
Calculus of Construction (CoC).

Definition 8 (Π-Induction Principle). States that if predicate holds for lambda
function then there is a function from function space to the space of predicate.

de f Π−ind (A : U) (B : A −> U) (C : Pi A B → U) (g : Π (x : Pi A B) , C x)
: Π (p : Pi A B) , C p := λ (p : Pi A B) , g p

Definition 9 (Π-Elimination). Application reduces the term by using recursive
substitution.

f a : B(a) =def

∏
A:U

∏
B:A→U

∏
a:A

∏
f :
∏

x:A B(a)

f(a).

de f apply (A: U) (B: A → U) (f : Pi A B) (a : A) : B a := f a
de f app (A B: U) (f : A → B) (x : A) : B := f x

Theorem 1 (Π-Composition). Composition is using application of appropriate
singnatures.

f(a) =B(a) (λ(x : A) → f(a))(a).

de f ◦⊤ (α β γ : U) : U
:= (β → γ) → (α → β) → (α → γ)

de f ◦ (α β γ : U) : ◦⊤ α β γ
:= λ (g : β → γ) (f : α → β) (x : α) , g (f x)

Theorem 2 (Π-Computation). β-rule shows that composition lam ◦ app could
be fused.

f(a) =B(a) (λ(x : A) → f(a))(a).

de f Π−β (A : U) (B : A → U) (a : A) (f : Pi A B)
: Path (B a) (apply A B (lambda A B f) a) (f a)

:= idp (B a) (f a)

Theorem 3. (Π-Uniqueness). η-rule shows that composition app ◦ lam could
be fused.

f =(x:A)→B(a) (λ(y : A) → f(y)).

de f Π−η (A : U) (B : A → U) (a : A) (f : Pi A B)
: Path (Pi A B) f (λ (x : A) , f x)

:= idp (Pi A B) f

7

Categorical interpretation

The adjoints Π and Σ is not the only adjoints could be presented in type system.
Axiomatic cohesions could contain a set of adjoint pairs as a core type checker
operations.

Definition 10 (Dependent Product). The dependent product along morphism
g : B → A in category C is the right adjoint Πg : C/B → C/A of the base change
functor.

Definition 11 (Space of Sections). Let H be a (∞, 1)-topos, and let E → B :
H/B a bundle in H, object in the slice topos. Then the space of sections ΓΣ(E)
of this bundle is the Dependent Product:

ΓΣ(E) = ΠΣ(E) ∈ H.

Theorem 4 (Homotopy Equivalence). If fiber space is set for all base, and there
are two functions f, g : (x : A) → B(x) and two homotopies between them, then
these homotopies are equal.

de f s e tP i (A: U) (B: A −> U)
(h : Π (x : A) , i s S e t (B x)) (f g : Pi A B)
(p q : Path (Pi A B) f g)

: Path (Path (Pi A B) f g) p q

Theorem 5 (Contractability). If domain and codomain is contractible then
the space of sections is contractible.

de f p i I sContr (A: U) (B: A −> U) (u : i sContr A)
(q : Π (x : A) , i sContr (B x))

: i sContr (Pi A B)

Definition 12 (Section). A section of morphism f : A → B in some category

is the morphism g : B → A such that f ◦ g : B
g−→ A

f−→ B equals the identity
morphism on B.

Homotopical interpretation

Geometrically, Π type is a space of sections, while the dependent codomain is
a space of fibrations. Lambda functions are sections or points in these spaces,
while the function result is a fibration. Π type also represents the cartesian
family of sets, generalizing the cartesian product of sets.

Definition 13. (Fiber). The fiber of the map p : E → B in a point y : B is all
points x : E such that p(x) = y.

Definition 14. (Fiber Bundle). The fiber bundle F → E
p−→ B on a total

space E with fiber layer F and base B is a structure (F,E, p,B) where p : E →
B is a surjective map with following property: for any point y : B exists a
neighborhood Ub for which a homeomorphism f : p−1(Ub) → Ub × F making
the following diagram commute.

8

p−1(Ub) Ub × F

Ub

f

p pr1

Definition 15. (Cartesian Product of Family over B). Is a set F of sections of
the bundle with elimination map app : F ×B → E such that

F ×B
app−−→ E

pr1−−→ B (1)

pr1 is a product projection, so pr1, app are morphisms of slice category Set/B .
The universal mapping property of F : for all A and morphism A × B → E in
Set/B exists unique map A → F such that everything commute. So a category
with all dependent products is necessarily a category with all pullbacks.

Definition 16 (Trivial Fiber Bundle). When total space E is cartesian product
Σ(B,F) and p = pr1 then such bundle is called trivial (F,Σ(B,F), pr1, B).

Theorem 6 (Functions Preserve Paths). For a function f : (x : A) → B(x)
there is an apf : x =A y → f(x) =B(x) f(y). This is called application of f to
path or congruence property (for non-dependent case — cong function). This
property behaves functoriality as if paths are groupoid morphisms and types
are objects.

Theorem 7 (Trivial Fiber Bundle equals Family of Sets). Inverse image (fiber)
of fiber bundle (F,B ∗ F, pr1, B) in point y : B equals F (y).

de f Family (B : U) : U1 := B → U
def F ibra t i on (B : U) : U1 := Σ (X : U) , X → B

def encode−Pi (B : U) (F : B → U) (y : B)
: f i b e r (Sigma B F) B (pr 1 B F) y → F y

:= λ (x : f i b e r (Sigma B F) B (pr 1 B F) y) ,
subst B F x . 1 . 1 y (<i> x . 2 @ − i) x . 1 . 2

de f decode−Pi (B : U) (F : B → U) (y : B)
: F y → f i b e r (Sigma B F) B (pr 1 B F) y

:= λ (x : F y) , ((y , x) , idp B y)

de f decode−encode−Pi (B : U) (F : B → U) (y : B) (x : F y)
: Path (F y) (transp (<i> F (idp B y @ i)) 0 x) x

:= <j> transp (<i> F y) j x

de f encode−decode−Pi (B : U) (F : B → U) (y : B)
(x : f i b e r (Sigma B F) B (pr 1 B F) y)

: Path (f i b e r (Sigma B F) B (pr 1 B F) y)
((y , encode−Pi B F y x) , idp B y) x

:= <i> ((x . 2 @ i , t ransp (<j> F (x . 2 @ i ∨ −j)) i x . 1 . 2) ,
<j> x . 2 @ i ∧ j)

de f Bundle=Pi (B : U) (F : B → U) (y : B)

9

: PathP (< > U) (f i b e r (Sigma B F) B (pr 1 B F) y) (F y)
:= i s o→Path (f i b e r (Sigma B F) B (pr 1 B F) y) (F y)

(encode−Pi B F y) (decode−Pi B F y)
(decode−encode−Pi B F y) (encode−decode−Pi B F y)

2.3 Dependent Sum (Σ)

Σ-type is a space that contains dependent pairs where type of the second element
depends on the value of the first element. As only one point of fiber domain
present in every defined pair, Σ-type is also a dependent sum, where fiber base
is a disjoint union.

Σ is a dependent sum type, the generalization of products. Σ type is a total
space of fibration. Element of total space is formed as a pair of basepoint and
fibration.

Spaces of dependent pairs are using in type theory to model cartesian prod-
ucts, disjoint sums, fiber bundles, vector spaces, telescopes, lenses, contexts,
objects, algebras, ∃-type, etc.

Type-theoretical interpretation

Definition 17 (Σ-Formation). The dependent sum type is indexed over type
A in the sense of coproduct or disjoint union, where only one fiber codomain
B(x) is present in pair.

Σ(A,B) : U =def

∏
A:U

∏
B:A→U

∑
x:A

B(x).

de f Sigma (A: U) (B: A → U) : U := Σ (x : A) , B(x)

Definition 18 (Σ-Introduction). The dependent pair constructor is a way to
create indexed pair over type A in the sense of coproduct or disjoint union.

pair : Σ(A,B) =def

∏
A:U

∏
B:A→U

∏
a:A

∏
b:B(a)

(a, b).

de f pa i r (A: U) (B: A → U) (a : A) (b : B a) : Sigma A B := (a , b)

Definition 19 (Σ-Elimination). The dependent projections pr1 : Σ(A,B) → A
and pr2 : Πx:Σ(A,B)B(pr1(x)) are pair deconstructors.

pr1 :
∏
A:U

∏
B:A→U

∏
x:Σ(A,B)

A =def .1 =def (a, b) 7→ a.

pr2 :
∏
A:U

∏
B:A→U

∏
x:Σ(A,B)

B(x.1) =def .2 =def (a, b) 7→ b.

10

de f pr 1 (A: U) (B: A → U) (x : Sigma A B) : A := x . 1
de f pr 2 (A: U) (B: A → U) (x : Sigma A B) : B (pr 1 A B x) := x . 2

Definition 20 (Σ-Induction). States that if predicate holds for two projections
then predicate holds for total space.

de f Σ−ind (A : U) (B : A −> U)
(C : Π (s : Σ (x : A) , B x) , U)
(g : Π (x : A) (y : B x) , C (x , y))
(p : Σ (x : A) , B x)

: C p := g p . 1 p . 2

Theorem 8 (Σ-Computation). de f Σ−β1 (A : U) (B : A → U) (a : A) (b : B a)
: Path A a (pr 1 A B (a ,b)) := idp A a

de f Σ−β2 (A : U) (B : A → U) (a : A) (b : B a)
: Path (B a) b (pr 2 A B (a , b)) := idp (B a) b

Theorem 9 (Σ-Uniqueness). de f Σ−η (A : U) (B : A → U) (p : Sigma A B)
: Path (Sigma A B) p (pr 1 A B p , pr 2 A B p)

:= idp (Sigma A B) p

Categorical interpretation

Definition 21. (Dependent Sum). The dependent sum along the morphism
f : A → B in category C is the left adjoint Σf : C/A → C/B of the base change
functor.

Set-theoretical interpretation

Theorem 10. (Axiom of Choice). If for all x : A there is y : B such that
R(x, y), then there is a function f : A → B such that for all x : A there is a
witness of R(x, f(x)).

de f ac (A B: U) (R: A −> B −> U)
(g : Π (x : A) , Σ (y : B) , R x y)

: Σ (f : A −> B) , Π (x : A) , R x (f x)
:= (\ (i :A) , (g i) . 1 , \ (j :A) , (g j) . 2)

Theorem 11. (Total). If fiber over base implies another fiber over the same
base then we can construct total space of section over that base with another
fiber.

de f t o t a l (A:U) (B C : A −> U)
(f : Π (x :A) , B x −> C x)
(w: Σ(x : A) , B x)

: Σ (x : A) , C x := (w. 1 , f (w. 1) (w. 2))

11

2.4 Path Space (Ξ)

The homotopy identity system defines a Path space indexed over type A with
elements as functions from interval [0, 1] to values of that path space [0, 1] → A.
HoTT book defines two induction principles for identity types: path induction
and based path induction.

This ctt file reflects 2CCHM cubicaltt model with connections. For 3ABCFHL
yacctt model with variables please refer to ytt file. You may also want to read
4BCH, 5AFH. There is a 6PO paper about CCHM axiomatic in a topos.

Chosing flavour of normal forms for identity system

Here we give brief description of structure inside path spaces:
Bounded Distributive Lattice: A bounded distributive lattice is a type

L : U equipped with binary operations ∧ : L → L → L, ∨ : L → L → L,
and constants 0 : L, 1 : L, satisfying associativity (a ∧ (b ∧ c) ≡ (a ∧ b) ∧ c,
a∨ (b∨c) ≡ (a∨b)∨c), commutativity (a∧b ≡ b∧a, a∨b ≡ b∨a), idempotence
(a∧a ≡ a, a∨a ≡ a), absorption (a∧ (a∨ b) ≡ a, a∨ (a∧ b) ≡ a), distributivity
(a∧(b∨c) ≡ (a∧b)∨(a∧c), a∨(b∧c) ≡ (a∨b)∧(a∨c)), and bounds (a∧0 ≡ 0,
a ∨ 1 ≡ 1). In a Boolean topos, L corresponds to the type of subobjects with
∧ ≡ ×, ∨ ≡ +, 0 ≡ ⊥, 1 ≡ ⊤.

De Morgan Algebra: A De Morgan Algebra in HoTT is a bounded dis-
tributive lattice (L,∧,∨, 0, 1) : U equipped with a unary operation ¬ : L → L
satisfying De Morgan’s Laws (¬(a ∧ b) ≡ ¬a ∨ ¬b, ¬(a ∨ b) ≡ ¬a ∧ ¬b) and in-
volution (¬¬a ≡ a). The type L models propositions with a negation operation
preserving these equivalences, and in a Boolean topos, L ∼= 2 = {true, false}
forms a Boolean algebra, satisfying De Morgan’s Laws as isomorphisms.

Heyting Algebra: A Heyting Algebra in HoTT is a bounded distributive
lattice (L,∧,∨, 0, 1) : U equipped with an implication operation →: L → L → L
such that, for all a, b, c : L, there is an equivalence a ≤ b → c ⇐⇒ a ∧ b ≤ c,
where ≤ is the partial order defined by a ≤ b ⇐⇒ a ∧ b ≡ a. Negation is
defined as ¬a ≡ a → 0, and modus ponens holds: given a : A and f : A → B,
there exists fa : B. In a Boolean topos, the Heyting algebra becomes a Boolean
algebra, with → corresponding to the exponential BA.

Boolean Algebra: A Boolean Algebra in HoTT is a De Morgan Algebra
(L,∧,∨,¬, 0, 1) : U satisfying the law of excluded middle (a ∨ ¬a ≡ 1) and
non-contradiction (a∧¬a ≡ 0). The type L ∼= 2 = {true, false} models classical

2Cyril Cohen, Thierry Coquand, Simon Huber, Anders Mörtberg. Cubical Type Theory:
a constructive interpretation of the univalence axiom. 2015. https://5ht.co/cubicaltt.pdf

3Carlo Angiuli, Brunerie, Coquand, Kuen-Bang Hou (Favonia), Robert Harper, Dan Li-
cata. Cartesian Cubical Type Theory. 2017. https://5ht.co/cctt.pdf

4Marc Bezem, Thierry Coquand, Simon Huber. A model of type theory in cubical sets.
2014. http://www.cse.chalmers.se/~coquand/mod1.pdf

5Carlo Angiuli, Kuen-Bang Hou (Favonia), Robert Harper. Cartesian Cubical Computa-
tional Type Theory: Constructive Reasoning with Paths and Equalities. 2018.
https://www.cs.cmu.edu/~cangiuli/papers/ccctt.pdf

6Andrew Pitts, Ian Orton. Axioms for Modelling Cubical Type Theory in a Topos. 2016.
https://arxiv.org/pdf/1712.04864.pdf

12

https://5ht.co/cubicaltt.pdf
https://5ht.co/cctt.pdf
http://www.cse.chalmers.se/~coquand/mod1.pdf
https://www.cs.cmu.edu/~cangiuli/papers/ccctt.pdf
https://arxiv.org/pdf/1712.04864.pdf

propositions, with a mandatory Boolean type in a Boolean topos, where L is
the subobject classifier Ω ∼= 2, and all operations correspond to classical logical
connectives.

In Per De Morgan algebra is used (CCHM flavour).

Type-theoretical interpretation

Definition 22 (Path Formation).

Ξ(A, x, y) : U =def

∏
A:U

∏
x,y:A

PathA(x, y).

de f Path (A : U) (x y : A) : U
:= PathP (< > A) x y

de f Path ’ (A : U) (x y : A)
:= Π (i : I) , A [∂ i |−> [(i = 0) → x , (i = 1) → y]]

Definition 23 (Path Introduction).

idp : x ≡A x =def

∏
A:U

∏
x:A

[i]x.

de f idp (A: U) (x : A) : Path A x x := < > x

Returns a reflexivity path space for a given value of the type. The inhabitant
of that path space is the lambda on the homotopy interval [0, 1] that returns a
constant value x. Written in syntax as [i]x.

Definition 24 (Path Application). You can apply face to path.

de f at0 (A: U) (a b : A) (p : Path A a b) : A := p @ 0
de f at1 (A: U) (a b : A) (p : Path A a b) : A := p @ 1

Definition 25 (Path Composition). Composition operation allows to build a
new path by given to paths in a connected point.

a c

a b

comp

λ(i : I) → a q

p@i

de f pcomp (A : U) (a b c : A) (p : Path A a b) (q : Path A b c)
: Path A a c

:= <i> hcomp A (∂ i) (λ (j : I) , [(i = 0) → a ,
(i = 1) → q @ j]) (p @ i)

Theorem 12 (Path Inversion).

13

de f inv (A: U) (a b : A) (p : Path A a b) : Path A b a := <i> p @ − i

Definition 26 (Connections). Connections allows you to build square with
given only one element of path: i) λ (i, j : I) → p @ min(i, j); ii) λ (i, j : I) →
p @ max(i, j).

a b

a a

p

λ (i : I) → a p

λ (i : I) → a

b b

a b

λ (i : I) → b

p λ (i : I) → b

p

de f meet (A: U) (a b : A) (p : Path A a b)
: PathP (<x> Path A a (p@x)) (<i>a) p
= <x y> p @ (x /\ y)

de f j o i n (A: U) (a b : A) (p : Path A a b)
: PathP (<x> Path A (p@x) b) p (<i>b)
= <y x> p @ (x \/ y)

Theorem 13 (Congruence). Is a map between values of one type to path space
of another type by an encode function between types. Implemented as lambda
defined on [0, 1] that returns application of encode function to path application
of the given path to lamda argument λ(i : I), f(p@i) for both cases.

ap : f(a) ≡ f(b) =def∏
A:U

∏
a,x:A

∏
B:A→U

∏
f :Π(A,B)

∏
p:a≡Ax

[i]f(p@i).

de f ap (A B: U) (f : A −> B) (a b : A) (p : Path A a b)
: Path B (f a) (f b)

de f apd (A: U) (a x : A) (B: A −> U)
(f : A −> B a) (b : B a) (p : Path A a x)

: Path (B a) (f a) (f x)

Theorem 14 (Generalized Transport Kan Operation). Transports a value of
the left type to the value of the right type by a given path element of the path
space between left and right types.

transport : A(0) → A(1) =def∏
A:I→U

∏
r:I

λx, transp([i]A(i), 0, x).

14

de f transp ’ (A: U) (x y : A) (p : PathP (< >A) x y) (i : I)
:= transp (<i> (\ (:A) ,A) (p @ i)) i x

de f transp−U (A B: U) (p : PathP (< >U) A B) (i : I)
:= transp (<i> (\ (:U) ,U) (p @ i)) i A

Definition 27 (Singleton). de f s i n g l (A: U) (a : A) : U := Σ (x : A) , Ξ
A a x

Theorem 15 (Singleton Instance). de f eta (A: U) (a : A) : s i n g l A a := (a , idp A a)

Theorem 16 (Singleton Contractability). de f contr (A : U) (a b : A) (p : Ξ
A a b)

: Ξ (s i n g l A a) (eta A a) (b , p)
:= <i> (p @ i , <j> p @ i /\ j)

Theorem 17 (Path Elimination). de f subst (A : U) (P : A −> U) (a b : A)
(p : Ξ A a b) (e : P a) : P b

:= transp (<i> P (p @ i)) 0 e

de f D (A : U) : U1

:= Π (x y : A) , Path A x y → U

def J (A: U) (x : A) (C: D A) (d : C x x (idp A x))
(y : A) (p : Ξ A x y) : C x y p

:= subst (s i n g l A x) (\ (z : s i n g l A x) , C x (z . 1) (z . 2))
(eta A x) (y , p) (contr A x y p) d

Theorem 18. (Path Computation).

de f t rans comp (A : U) (a : A)
: Ξ A a (t ranspor t A A (<i> A) a)

:= <j> transp (< > A) −j a

de f subst−comp (A: U) (P: A → U) (a : A) (e : P a)
: Ξ (P a) e (subst A P a a (idp A a) e)

:= trans comp (P a) e

de f J−β (A : U) (a : A) (C : D A) (d : C a a (idp A a))
: Ξ (C a a (idp A a)) d (J A a C d a (idp A a))

:= subst−comp (s i n g l A a)
(\ (z : s i n g l A a) , C a (z . 1) (z . 2)) (eta A a) d

Note that Path type has no Eta rule due to groupoid interpretation.

Groupoid interpretation

The groupoid interpretation of type theory is well known article by Martin
Hofmann and Thomas Streicher, more specific interpretation of identity type as
infinity groupoid [6].

15

Contexts

In Martin-Löf Type Theory (MLTT), contexts define the typing environment for
judgments, consisting of a sequence of typed variable declarations that enable
the derivation of types and terms.

Context as metatheoretical entity couldn’t be internalized but could be imag-
ined as telescopes, ensuring well-formedness and supporting constructive type
checking. Explicit context rendering could be seen in categorical interpretation
of dependent type theory

Definition 28 (Empty Context). The empty context contains no variable dec-
larations and serves as the base case for context formation. It is represented as
the unit type, indicating an empty telescope:

γ0 : Γ =def ⋆.

Definition 29 (Context Comprehension). A context is extended by adding a
variable declaration for a type dependent on the existing context. For a context
Γ and a type A over Γ, the extended context is:

Γ;A =def

∑
γ:Γ

A(γ).

This is encoded as a dependent pair, binding a variable to a type in the context.

Definition 30 (Context Derivability). A type A is derivable in a context Γ if
it can be assigned to a universe given the variables in Γ:

Γ ⊢ A =def

∏
γ:Γ

A(γ).

This corresponds to a dependent function type, ensuring A is well-typed across
all context elements: For terms, a term t : A in Γ, written Γ ⊢ t : A, is derivable
if it respects the context’s bindings.

Definition 31 (Terms). A term is an element of a type within a context. Given
Γ ⊢ A : Ui, a term t satisfies Γ ⊢ t : A. Terms include variables, constructors
(e.g., λ for Π, pairs for Σ), and applications, defined by MLTT-73’s syntax.

Contexts provide a structured environment for deriving judgments. They
integrate with the any reasoning framework, supporting and ensuring sequential
constructive verification.

MLTT-73

Here is given formal model of type-theoretical interpretation of Martin-Löf Type
Theory. It combines 4 Path rules (no eta), 5 Π rules, and 6 Σ rules (two elims).
The proof is provided by direct embedding (internalizing) the model intro the
model of type checker which is even more powerful.

16

Definition 32 (MLTT-73 Reality Check). The MLTT as a Type is defined by
taking all rules for Π, Σ and Path types into one Σ telescope or context.

de f MLTT−73 (A : U) : U1 :=
Σ (Π−form : Π (B : A → U) , U)

(Π−c to r 1 : Π (B : A → U) , Pi A B → Pi A B)
(Π−e l im 1 : Π (B : A → U) , Pi A B → Pi A B)
(Π−comp1 : Π (B : A → U) (a : A) (f : Pi A B) ,

Ξ (Ξ (B a) (Π−e l im 1 B (Π−c to r 1 B f) a) (f a))
(Π−comp2 : Π (B : A → U) (a : A) (f : Pi A B) ,

Ξ (Pi A B) f (λ (x : A) , f x))
(Σ−form : Π (B : A → U) , U)
(Σ−c to r 1 : Π (B : A → U) (a : A) (b : B a) , Sigma A B)
(Σ−e l im 1 : Π (B : A → U) (p : Sigma A B) , A)
(Σ−e l im 2 : Π (B : A → U) (p : Sigma A B) , B (pr 1 A B p))
(Σ−comp1 : Π (B : A → U) (a : A) (b : B a) ,

Ξ A a (Σ−e l im 1 B (Σ−c to r 1 B a b)))
(Σ−comp2 : Π (B : A → U) (a : A) (b : B a) ,

Ξ (B a) b (Σ−e l im 2 B (a , b)))
(Σ−comp3 : Π (B : A → U) (p : Sigma A B) ,

Ξ (Sigma A B) p (pr 1 A B p , pr 2 A B p))
(=−form : Π (a : A) , A → U)
(=−c to r 1 : Π (a : A) , Path A a a)
(=−e l im 1 : Π (a : A) (C: D A) (d : C a a (=−c to r 1 a))

(y : A) (p : Path A a y) , C a y p)
(=−comp1 : Π (a : A) (C: D A) (d : C a a (=−c to r 1 a)) ,

Ξ (C a a (=−c to r 1 a)) d
(=−e l im 1 a C d a (=−c to r 1 a))) , 1

Theorem 19. (Model Check). There is an instance of MLTT.

de f i n t e r n a l i z i n g (A : U) : MLTT A
:= (Pi A, Π−lambda A, Π−apply A, Π−β A, Π−η A,

Sigma A, pa i r A, pr 1 A, pr 2 A, Σ−β1 A, Σ−β2 A, Σ−η A,
Path A, idp A, J A, J−β A, ⋆)

The result of the work is a mltt.ctt file which can be runned using cubicaltt.
Note that MLTT-73 internalization includes only eliminator and computational
rule for identity system (without uniquness rule), as cubical Path spaces refute
uniqueness of identity proofs.

Conclusions

This article presents a landmark achievement in type theory: the construc-
tive internalization of Martin-Löf Type Theory (MLTT-73) computational rules
within the Per language, a minimal type system equipped with cubical type
theory primitives.

This internalization, formalized also in the mltt.ctt for double checking,
validates MLTT-73 in cubicaltt, providing a rigorous test of a type checker’s
ability to fuse introduction and elimination rules through computational and
uniqueness equations.

The significance of this work lies in its constructive approach to the J elim-
inator, a cornerstone of MLTT-73 identity type, which previous internalization

17

Language Un Π Σ Id Ξ N 0/1/2 W Ind
Systen Pω (CoC-88) x
MLTT-72 x x
Henk (ECC) x x
Errett (LCCC/IPL) x x x x
MLTT-73 x x x x
Per x x x x x x x x
MLTT-75 x x x x x x
MLTT-80 x x x x x
Anders (HTS) x x x x x x x
Frank (CoC+CIC) x x x
Christine (Coq) x x x x x
cubicaltt x x x x
Agda x x x x x x
Lean x x x x x
NuPRL x x x x

attempts failed to derive constructively [3, 10]. By leveraging cubical type
theory’s Path types and operations (e.g., connections, compositions), the type
checker achieves a compact foundational core for verifying mathematics.

The article also elucidates MLTT-73 versatility through logical, categori-
cal, homotopical, and set-theoretical interpretations, offering a comprehensive
landscape for researchers and newcomers to type theory.

References

[1] Vladimir Voevodsky et al., Homotopy Type Theory, in Univalent Founda-
tions of Mathematics, 2013.

[2] Per Martin-Löf and Giovanni Sambin, The Theory of Types, in Studies in
Proof Theory, 1972.

[3] Per Martin-Löf, An Intuitionistic Theory of Types: Predicative Part, in
Studies in Logic and the Foundations of Mathematics, vol. 80, pp. 73–118,
1975. doi:10.1016/S0049-237X(08)71945-1

[4] Per Martin-Löf and Giovanni Sambin, Intuitionistic Type Theory, in Studies
in Proof Theory, 1984.

[5] Thierry Coquand and Gérard Huet, The Calculus of Con-
structions, in Information and Computation, pp. 95–120, 1988.
doi:10.1016/0890-5401(88)90005-3

[6] Martin Hofmann and Thomas Streicher, The Groupoid Interpretation of
Type Theory, in Venice Festschrift, Oxford University Press, pp. 83–111,
1996.

18

[7] Claudio Hermida and Bart Jacobs, Fibrations with Indeterminates: Con-
textual and Functional Completeness for Polymorphic Lambda Calculi, in
Mathematical Structures in Computer Science, vol. 5, pp. 501–531, 1995.

[8] Alexandre Buisse and Peter Dybjer, The Interpretation of Intuitionistic
Type Theory in Locally Cartesian Closed Categories – an Intuitionistic Per-
spective,in Electronic Notes in Theoretical Computer Science, pp. 21–32,
2008. doi:10.1016/j.entcs.2008.10.003

[9] Errett Bishop, Foundations of Constructive Analysis, 1967.

[10] Bengt Nordström, Kent Petersson, and Jan M. Smith, Programming in
Martin-Löf ’s Type Theory, Oxford University Press, 1990.

[11] Matthieu Sozeau and Nicolas Tabareau, Internalizing Intensional Type
Theory, unpublished.

[12] Martin Hofmann and Thomas Streicher, The Groupoid Model Refutes
Uniqueness of Identity Proofs, in Logic in Computer Science (LICS’94),
IEEE, pp. 208–212, 1994.

[13] Bart Jacobs, Categorical Logic and Type Theory, vol. 141, 1999.

[14] Anders Mörtberg et al., Cubical Type Theory: A Constructive Interpreta-
tion of the Univalence Axiom, arXiv:1611.02108, 2017.

[15] Simon Huber, Cubical Interpretations of Type Theory, Ph.D. thesis, Dept.
of Computer Science and Engineering, University of Gothenburg, 2016.

[16] Maksym Sokhatskyi and Pavlo Maslianko, The Systems Engineering of
Consistent Pure Language with Effect Type System for Certified Applica-
tions and Higher Languages, in Proc. 4th Int. Conf. Mathematical Mod-
els and Computational Techniques in Science and Engineering, 2018.
doi:10.1063/1.5045439

19

	Interpretations
	Type Theory
	Logic
	Category Theory
	Homotopy Theory

	Dependent Type Theory
	Universes (Ui)
	Dependent Product ()
	Dependent Sum ()
	Path Space ()

