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Amnorairis

Background. The long road from pure type systems of AUTOMATH
by de Bruijn to type checkers with homotopical core was made. This ar-
ticle touches only the formal Martin-Lof Type Theory core type system
with IT and ¥ types (that correspond to V and 3 quantifiers for mathe-
matical reasoning) and identity type (MLTT-75). Expressing the MLTT
embedding in a host type checker for a long time was inaccessible due to
the non-derivability of the J eliminator in pure functions. This was re-
cently made possible by cubical type theory and cubical type checker.

Objective. Select the type system as a part of conceptual model of
theorem proving system that is able to derive the J eliminator and its
theorems based on the latest research in cubical type systems. The goal of
this article is to demonstrate the formal embedding of MLTT-75 into Per
with constructive proofs of the complete set of inference rules including J
eliminator.

Methods. As types are formulated using 5 types of rules (formation,
intro, elimination, computation, uniqueness) according to MLTT we con-
structed aliases for the host language primitives and used the cubical type
checker to prove that it has the realization of MLTT-75.

Results. This work leads to several results: 1) Per — a special em-
bedded version of type theory with infinite number of universes and Path
type suitable for HoTT purposes without uniqueness rule of equality type;
2) The actual embedding of MLTT with syntax implying universe poly-
morphism and cubical primitives in Per; 3) The different interpretations
of types were given: set-theoretical, groupoid, homotopical;

4) Internalization could be seen as an ultimate test sample for type check-
er as intro-elimination fusion resides in beta-eta rules, so by proving them,
we prove properties of the host type checker.

Conclusion. We should note that this is an entrance to the inter-
nalization technique, and after formal MLTT embedding, we could go
through inductive types up to embedding of CW-complexes as the indexed
gluing of the higher inductive types. This means the implementation of
a wide spectrum of math theories inside HoTT up to algebraic topology.

Keywords: Martin-Loéf Type Theory, Cubical Type Theory.



Introduction

Each language implementation needs to be checked. The one of possible test
cases for type checkers is the direct embedding of type theory model into the
language of type checker. As types in Martin-Lof Type Theory [3, 5] are for-
mulated using 5 types of rules (formation, introduction, elimination, compu-
tation, uniqueness), we construct aliases for host language primitives and use
type checker to prove that it is MLTT-75. This could be seen as ultimate test
sample for type checker as intro-elimination fusion resides in beta-eta rules, so
by proving them we prove properties of the host type checker.

Also this issue opens a series of articles dedicated to formalization in cubical
type theory the foundations of mathematics. This issue is dedicated to MLTT
modeling and its verification. Also as many may not be familiar with IT and X
types, this issue presents different interpretation of MLTT types.

This test is fully made possible only after 2017 when new constructive HoTT
[1] prover cubicaltt! prover was presented [17].

Problem Statement

The formal initial problem was to create a full self-contained MLTT internal-
ization in the host typechecker, where all theorems are being checked construc-
tively. This task involves a modern techniques in type theory, namely cubical
type theories. By following most advaced theories apply this results for building
minimal type checker that is able to derive J and the whole MLTT theorems
constructively. This leads us to the compact MLTT core yet compatible with
future possible homotopy extensions.

Per Language Syntax

The BNF notation of type checker language used in code samples consists of:
i) telescopes (contexts or sigma chains) and definitions; ii) pure dependent type
theory syntax; iii) inductive data definitions (sum chains) and split eliminator;
iv) cubical face system; v) module system. It is slightly based on cubicaltt.

sys := [ sides |
side := (id=0)—exp +(id=1)—exp
f1 = f1 /\ f2
f2 :=—f2 +id + 0 + 1
form := form \/ f1 + f1 + f2
sides := #empty + cos + side
cos := side,side + side ,cos
id := #list #nat
ids := #list id
mod := module id where imps dec
imps := #list imp
imp := import id
brs := #empty + cobrs
cobrs := | br brs

Lhttp://github.com/mortberg/cubicaltt



exp — exp +(exp) +id

(exp,exp) + \cotele — exp

split cobrs +exp .1

exp .2 +( ids ) exp

exp @ form + app + comp exp Ssys

br := ids — exp +ids @ ids — exp
tel := #empty + cotel
dec := #empty + codec
cotel := (exp:exp) tel
codec := def dec
sum := #empty + id tel + id tel | sum
def := data id tel=sum +id tel:exp=exp
+ id tel : exp where def
app := exp exp
exp := cotel * exp + cotel — exp
+
+
+
+
+

Here := (definition), + (disjoint sum), #empty, #nat, #list are parts of BNF
language and |, :, *, (,), (, ), =, \, /, -, =, 0, 1, @, [, ], module, import, data,
split, where, comp, .1, .2, and , are terminals of type checker language. This
language includes inductive types, higher inductive types and gluening opera-
tions needed for both, the constructive homotopy type theory and univalence.
All these concepts as a part of the languages will be described in the upcoming
Issues II — V.

1 Interpretations

Martin-Lof Type Theory MLTT-80 contains II, 3, Id, W, 0, 1, 2 types.

Any new type in MLTT presented with set of 5 rules: i) formation rules,
the signature of type; ii) the set of constructors which produce the elements
of formation rule signature; iii) the dependent eliminator or induction principle
for this type; iv) the beta-equality or computational rule; v) the eta-equality or
uniquness principle. II, 3, and Path types will be given shortly. This interpre-
tation or rather way of modeling is MLTT specific.

The most interesting are Id types. Id types were added in MLTT-75 [5]
while original MLTT-72 with only II and ¥ was introduced in [3]. Predicative
Universe Hierarchy was added in [4]. While original MLTT-75 contains Id types
that preserve uniquness of identity proofs (UIP) or eta-rule of Id type, HoTT
refutes UIP (eta rule desn’t hold) and introduces univalent heterogeneous Path
equality [7].

Path types are essential to prove computation and uniquness rules for all
types (needed for building signature and terms), so we will be able to prove all
the MLTT rules as a whole.

In contexts you can bind to variables (through de Brujin indexes or string
names): 1) indexed universes; ii) built-in types; iii) user constructed types, and
ask questions about type derivability, type checking and code extraction. This
system defines the core type checker within its language.

By using this languages it is possible to encode different interpretations of
type theory itself and its syntax by construction. Usually the issues will refer to



following interpretations: i) type-theoretical; ii) categorical; iii) set-theoretical;
iv) homotopical; v) fibrational or geometrical.

Taba. 1: *
Table. Interpretations correspond to mathematical theories

Type Theory Logic Category Theory Homotopy Theory
A type class object space
isProp A proposition (-1)-truncated object space

a:A program proof generalized element point

B(x) predicate indexed object fibration
b(z) : B(x) conditional proof indexed elements section

0 1 false initial object empty space

1 T true terminal object singleton
A+ B AV B disjunction coproduct coproduct space
Ax B A A B conjunction product product space
A— B A= B internal hom function space
Sx: A B(x) 3p:aB(x) dependent sum total space
[1z: A, B(x) Ve aB(x) dependent product space of sections
Path 4 equivalence =4 path space object path space A’
quotient equivalence class quotient quotient
W-type induction colimit complex
type of types universe object classifier universe
quantum circuit proof net string diagram

1.1 Logical Interpretation

According to type theoretical interpretation of MLTT for any type should be
provided 5 formal inference rules: i) formation; ii) introduction; iii) dependent
elimination principle; iv) beta rule or computational rule; v) eta rule or unique-
ness rule. The last one could be exceptional for Path types. The formal represen-
tation of all rules of MLTT are given according to type-theoretical interpretation
as a final result in this Issue I. It was proven that classical Logic could be em-
bedded into intuitionistic propositional logic (IPL) which is directly embedded
into MLTT.

Logical and type-theoretical interpretations could be distincted. Also set-
theoretical interpretation is not presented in the Table.

1.2 Categorical Interpretation

Categorical interpretation [11] is a modeling through categories and functors.
First category is defined as objects, morphisms and their properties, then we
define functors, etc. In particular, as an example, according to categorical inter-
pretation IT and ¥ types of MLTT are presented as adjoint functors, and forms
itself a locally closed cartesian category, which will be given an intermediate
result in future issues. In some sense we include here topos-theoretical interpre-



tations, with presheaf model of type theory as example (in this case fibrations
are constructes as functors, categorically).

1.3 Homotopical Interpretation

In classical MLTT uniquness rule of Id type do holds strictly. In Homotopical
interpretation of MLTT we need to allow a path space as Path type where
uniqueness rule doesn’t hold. Groupoid interpretation of Path equality that
doesn’t hold UIP generally was given in 1996 by Martin Hofmann and Thomas
Streicher [7].

When objects are defined as fibrations, or dependent products, or indexed-
objects this leds to fibrational semantics and geometric sheaf interpretation.
Several definition of fiber bundles and trivial fiber bindle as direct isomorphisms
of II types is given here as theorem. As fibrations study in homotopical inter-
pretation, geometric interpretation could be treated as homotopical.

1.4 Set Interpretation

Set-theoretical interpretations could replace first-order logic, but could not allow
higher equalities, as long as inductive types to be embedded directly. Set is
modelled in type theory according to homotopical interpretation as n-type.

MLTT-80 could be reduced to II, ¥, Path types (MLTT-75) omitting poly-
nomial functors W modeled by F-algebras and their terminators: 0, 1, 2 types.
In this issue II, X, Path are given as a core of MLTT-75. The inductive types
will be disscussed in the upcoming Issue II: Inductive Types.

2 Internalized Type Theory

2.1 Dependent Product (II)

IT is a dependent product type, the generalization of functions. As a function
it can serve the wide range of mathematical constructions as its domain and
codomain, which are in general: objects, types, or spaces; and could have as
its instance: sets, functions, polynomial functors, infinitesimals, co-groupoids,
topological co-groupoid, CW-complexes, categories, languages, etc.

At this light there could be many interpretation of II types from different
areas of mathematics. We give here three: i) logical interpretation of I as V
quantifier from higher order logic that forms a ground of type theory; ii) geomeric
intepretation of IT as fiber bundle; iii) categorical interpretation of functions as
functors.

Type-theoretical interpretation

As a logical system dependent type theory could correspond to higher order
logic. However here only type-theoretical model is given completely.



Definition 1. (II-Formation).

(JJ A)—}B —def HB

Pi (A: U) (B: A—>TU): U= (x: A) > B x

Definition 2. (II-Introduction).

\z:A) s b=as [[ T] I II M=b: HB (a).

A:U B:A—U a:A b:B(a)

lambda (A B: U) (b: B): A-—> B
lam (A:U) (B: A —> U) (a:A) (b
:A—>Ba=)\ (x: A) >b

\ (x: A) —> b
a

B a)

Definition 3. (II-Elimination).

fa=ar [T II II 11 #(@:B(a).

A:U B:A—=U a:A f:]].. 4 B(a)

apply (AB: U) (f: A—>B) (a: A) : B=f a
app (A: U) (B: A—>U) (a: A)
(f: A—>Ba) : Ba="fa

Theorem 1. (II-Computation).
fla) =@ Az : A) = f(a))(a).

Beta (A: U) (B: A —>U) (a: A) (f: A—> B a)
: Path (B a) (app A B a (lam A B a (f a)))
(f a)

Theorem 2. (II-Uniqueness).
f=@a-B@ My :A) = f(y).

Eta (A: U) (B: A—>U) (a: A) (f: A—> B a)
: Path (A—> B a) f (\(x:A) —> f x)

Categorical interpretation

The adjoints IT and ¥ is not the only adjoints could be presented in type system.
Axiomatic cohesions could contain a set of adjoint pairs as a core type checker
operations.



Definition 4. (Dependent Product). The dependent product along morphism
g : B — Ain category C'is the right adjoint Il : C/p — C) 4 of the base change
functor.

Definition 5. (Space of Sections). Let H be a (oo, 1)-topos, and let F — B :
H,p a bundle in H, object in the slice topos. Then the space of sections I's(E)
of this bundle is the Dependent Product:

I's(F)=1Ix(F) € H.

Theorem 3. (HomSet). If codomain is set then space of sections is a set.

setFun (A B : U) (_: isSet B)
isSet (A —> B)

Theorem 4. (Contractability). If domain and codomain is contractible then
the space of sections is contractible.
pilsContr (A: U) (B: A —> U) (u: isContr A)

(q: (x: A) — isContr (B x))

isContr (Pi A B)

Definition 6. (Section). A section of morphism f : A — B in some category

is the morphism g : B — A such that fog: B % A ENy?! equals the identity
morphism on B.

Homotopical interpretation

Geometrically, II type is a space of sections, while the dependent codomain is
a space of fibrations. Lambda functions are sections or points in these spaces,
while the function result is a fibration. IT type also represents the cartesian
family of sets, generalizing the cartesian product of sets.

Definition 7. (Fiber). The fiber of the map p : E — B in a point y : B is all
points z : E such that p(z) = y.

Definition 8. (Fiber Bundle). The fiber bundle F — E £ B on a total space
E with fiber layer F' and base B is a structure (F, E,p, B) wherep: E — Bisa
surjective map with following property: for any point y : B exists a neighborhood
Uy for which a homeomorphism f : p~1(U,) — U, x F making the following
diagram commute.

p_l(Ub) Uy, x F
p /
Uy

10



Definition 9. (Cartesian Product of Family over B). Is a set F' of sections of
the bundle with elimination map app : F' X B — E such that

FxB*2, pXLp (1)

pry is a product projection, so pri, app are morphisms of slice category Set,p.
The universal mapping property of F": for all A and morphism A x B — FE in
Setp exists unique map A — F such that everything commute. So a category
with all dependent products is necessarily a category with all pullbacks.

Definition 10. (Trivial Fiber Bundle). When total space E is cartesian product
¥(B, F) and p = pry then such bundle is called trivial (F,3(B, F), pr1, B).

Theorem 5. (Functions Preserve Paths). For a function f : (z : A) — B(x)
there is an apy : ©* =4 y — f(x) =p() f(y). This is called application of f to
path or congruence property (for non-dependent case — cong function). This
property behaves functoriality as if paths are groupoid morphisms and types
are objects.

Theorem 6. (Trivial Fiber equals Family of Sets). Inverse image (fiber) of fiber
bundle (F, B * F,pry, B) in point y : B equals F(y).
FiberPi (B: U) (F: B —> U) (y: B)
: Path U (fiber (Sigma B F) B (pil BF) y)
(Fy)

Theorem 7. (Homotopy Equivalence). If fiber space is set for all base, and
there are two functions f,g : (z : A) — B(z) and two homotopies between
them, then these homotopies are equal.
setPi (A: U) (B: A — U)
(h: (x: A) — isSet (B x)) (f g: Pi A B)
(p q: Path (Pi AB) f g)
: Path (Path (Pi AB) f g) pq

Note that we will not be able to prove this theorem until Issue III: Homo-
topy Type Theory because bi-invertible iso type will be announced there.

2.2 Dependent Sum (X)

Y. is a dependent sum type, the generalization of products. ¥ type is a total
space of fibration. Element of total space is formed as a pair of basepoint and
fibration.

Type-theoretical interpretation

Definition 11. (X-Formation).

Sigma (A : U) (B : A —> 1)
: U= (x : A) *B x

11



Definition 12. (X-Introduction).

dpair (A: U) (B: A—> U) (a: A) (b: B a)
: Sigma A B = (a,b)

Definition 13. (X-Elimination).

prl (A: U) (B: A —> U)
(x: Sigma A B): A = x.1

pr2 (A: U) (B: A —> U)
(x: Sigma A B): B (prl AB x) = x.2

sigInd (A: U) (B: A —> U)
(C: Sigma A B —> U)
(g: (a: A) (b: Ba) —> C (a, b))
(p: Sigma AB) : Cp=g¢g p.1 p.2

Theorem 8. (X-Computation).

Betal (A: U) (B: A —> U)
(a:A) (b: B a)
: Equ A a (prl AB (a,b))

Beta2 (A: U) (B: A —> U)
(a: A) (b: B a)
: Equ (B a) b (pr2 AB (a,b))

Theorem 9. (X-Uniqueness).

Eta2 (A: U) (B: A — U) (p: Sigma A B)
: Equ (Sigma A B) p (prl A B p,pr2 A B p)

Categorical interpretation

Definition 14. (Dependent Sum). The dependent sum along the morphism
[+ A — B in category C is the left adjoint 3y : C/4 — C/p of the base change
functor.

Set-theoretical interpretation

Theorem 10. (Axiom of Choice). If for all  : A there is y : B such that
R(z,y), then there is a function f : A — B such that for all z : A there is a
witness of R(z, f(x)).

ac (AB: U) (Rt A—> B —> 1)

: (p: (x:A) —> (y:B)*(R x y))
—> (f:A>B) * ((x:A)—>R(x)(f x))

Theorem 11. (Total). If fiber over base implies another fiber over the same
base then we can construct total space of section over that base with another
fiber.

12



total (A:U) (B C: A -—> U)
(f: (x:A) =—> B x = C x) (w: Sigma A B)
Sigma A C = (w.1,f (w.1) (w.2))

Theorem 12. (X-Contractability). If the fiber is set then the ¥ is set.
setSig (A:U) (B: A —> U) (sA: isSet A)

(sB : (x:A) — isSet (B x))

isSet (Sigma A B)

Theorem 13. (Path Between Sigmas). Path between two sigmas ¢, u : ¥(A, B)
could be decomposed to sigma of two paths p: t; =4 u1) and (t2 =pgpai) u2)-
pathSig (A:U) (B : A—> U) (t u : Sigma A B)

Path U (Path (Sigma A B) t u)

((p: Path A t.1 u.l)
* PathP (<i>B(p@i)) t.2 u.2)

2.3 Path (%)

The Path identity type or = defines a Path space with elements and values.
Elements of that space are functions from interval [0,1] to a values of that
path space. This ctt file reflects 2CCHM cubicaltt model with connections. For
3ABCFHL yacctt model with variables please refer to ytt file. You may also
want to read “BCH, AFH. There is a PO paper about CCHM axiomatic in a
topos.

Cubical interpretation

Cubical interpretation was first given by Simon Huber [18] and later was written
first constructive type checker in the world by Anders Mortberg [17].

Definition 15. (Path Formation).

Hetero (A B: U)(a: A)(b: B)(P: Path U A B)
: U= PathP P a b

Path (A: U) (a b: A)
: U= PathP (<i> A) a b

2Cyril Cohen, Thierry Coquand, Simon Huber, Anders Mortberg. Cubical Type Theory: a
constructive interpretation of the univalence axiom. 2015. https://5ht.co/cubicaltt.pdf

3Carlo Angiuli, Brunerie, Coquand, Kuen-Bang Hou (Favonia), Robert Harper, Dan Licata.
Cartesian Cubical Type Theory. 2017. https://5ht.co/cctt.pdf

4Marc Bezem, Thierry Coquand, Simon Huber. A model of type theory in cubical sets.
2014. http://www.cse.chalmers.se/~coquand/modl.pdf

5Carlo Angiuli, Kuen-Bang Hou (Favonia), Robert Harper. Cartesian Cubical Computa-
tional Type Theory: Constructive Reasoning with Paths and Equalities. 2018.
https://www.cs.cmu.edu/~cangiuli/papers/ccctt.pdf

6 Andrew Pitts, Ian Orton. Axioms for Modelling Cubical Type Theory in a Topos. 2016.
https://arxiv.org/pdf/1712.04864.pdf

13



Definition 16. (Path Reflexivity). Returns an element of reflexivity path space
for a given value of the type. The inhabitant of that path space is the lambda on
the homotopy interval [0, 1] that returns a constant value a. Written in syntax
as |<i>a| which equals to A (i : I) — a.

refl (A: U) (a: A) : Path A a a

Definition 17. (Path Application). You can apply face to path.

(
appl (A: U)(a b:A)(p:Path A a b):A=p@0
app2 (A: U)(a b:A)(p:Path A a b):A=p@1

Definition 18. (Path Composition). Composition operation allows to build a
new path by given to paths in a connected point.

comp
a ——> ¢
A(i:[)—)a[ [q
pQq
a —_—

composition
(A: U) (a b c: A)
(p: Path A a b) (q: Path A b ¢)
: Path A a ¢
= comp (<i>Path A a (q@i)) p []

Theorem 14. (Path Inversion).

inv (A: U) (a b: A) (p: Path A a b)
: Path A b a=<i>p @ —i

Definition 19. (Connections). Connections allows you to build square with
given only one element of path: i) A (4,7 : I) — p @ min(i,); i) X (4,5 : ) —
p @ max(i,j).

P A(i:I)—=b
a ——> b b — b
A (i I)%a[ [p p[ [)\(z I—b
A(i:I)—a D
a ——> a a —> b

meet (A: U) (a b: A) (p: Path A a b)
: PathP (<x> Path A a (p@x)) (<i>a) p
=<xy>p@(x /\vy)

join (A: U) (a b: A) (p: Path A a b)

: PathP (<x> Path A (p@x) b) p (<i>b)
=<y x>p @ (x\/y)

14



Theorem 15. (Congruence). Is a map between values of one type to path space
of another type by an encode function between types. Implemented as lambda
defined on [0, 1] that returns application of encode function to path application
of the given path to lamda argument |\ (i:I) — f (p @ i)| for both cases.
ap (A B: U) (f: A—> B)
(a b: A) (p: Path A a b)
: Path B (f a) (f b)

apd (A: U) (a x:A) (B: A—>TU) (f: A—> B a)
(b: B a) (p: Path A a x)
: Path (B a) (f a) (f x)

Theorem 16. (Transport). Transports a value of the domain type to the value
of the codomain type by a given path element of the path space between domain
and codomain types. Defined as path composition with |[]| of a over a path p —

|comp p a []].
trans (A B: U) (p: Path UA B) (a: A) : B

Type-theoretical interpretation

Definition 20. (Singleton).
singl (A: U) (a: A): U= (x: A) * Path A a x

Theorem 17. (Singleton Instance).

eta (A: U) (a: A): singl A a = (a,refl A a)

Theorem 18. (Singleton Contractability).

contr (A: U) (a b: A) (p: Path A a b)
: Path (singl A a) (eta A a) (b,p)
=<i> (p @i,<j>p @ i/\j)

Theorem 19. (Path Elimination, Paulin-Mohring). J is formulated in a form of
Paulin-Mohring and implemented using two facts that singleton are contractible
and dependent function transport.

J (A: U) (a b: A)

P: singl A a —> U)

u: P (a,refl A a))

p: Path A a b) : P (b,p)

Theorem 20. (Path Elimination, HoTT). J from HoTT book.
J (A: U) (a b: A)

(C: (x: A) —> Path A a x —> U)

(d: C a (refl A a))

(p: Path A ab) : Cbp

Theorem 21. (Path Computation).

15



trans comp (A: U) (a: A)
: Path A a (trans A A (<> A) a)
= fill (<i> A) a []
subst_comp (A: U) (P: A— U) (a: A) (e: P a)
: Path (P a) e (subst AP a a (refl A a) e)
= trans_comp (P a) e
J comp (A: U) (a: A) (C: (x: A)
—> Path A a x —> U) (d: C a (refl A a))
: Path (C a(refl A a)) d
(JAaCd a(refl A a))
= subst_comp (singl A a) T (eta A a) d
where T (z:singl A a)
: U=Ca (z.1) (z.2)

Note that Path type has no Eta rule due to groupoid interpretation.

Groupoid interpretation

The groupoid interpretation of type theory is well known article by Martin
Hofmann and Thomas Streicher, more specific interpretation of identity type as
infinity groupoid.

2.4 Contexts

Speaking of type checker execution, we introduce context or dictionary with
types and terms, from which we can derive typed variables. This chain could
be implemented as nested sigma types (due to R.A.G.Seely) or list types (due
to Voevodsky). Categorically dependent type theory is built upon categories of
contexts.

Definition 21. (Empty Context).
Yo : I =def *.

Definition 22. (Context Comprehension).

r ;A —def ZA(’Y)
v:

Definition 23. (Context Derivability).

r-A =def HA(FY)
v:
2.5 Universes

Definition 24. (Terms). Point in initial object of language AST inductive def-
inition is called a term. If type theory or language is defined as an inductive
type (AST) then the term is defined as its instance.

16



Definition 25. (Sorts). N-indexed set of universes U, ¢cn. Could have any num-
ber of elements which defines different type systems. All built-in types as long as
user defined types are landed usually by default in Uj universe. Sorts represented
in type checker as a separate constructor.

Definition 26. (Axioms). The inclusion rules U; : Uj, ¢, j € N, that define which
universe is element of another given universe. You may attach any rules that
joins 4,7 in some way. Axioms with sorts define universe hierarchy.

Definition 27. (Rules). The set of landings U; — Uj : Uyj),ijen, Where
A: N x N — N. These rules define term dependence or how we land (in which
universe) formation rules in definitions.

Definition 28. (Predicative hierarchy). If A in Rules is an uncurried function
max : N X N — N then such universe hierarchy is called predicative.

Definition 29. (Impredicative hierarchy). If A in Rules is a second projection
of a tuple snd : N x N — N then such universe hierarchy is called impredicative.

Definition 30. (Definitional Equality). For any U;,i € N there is defined an
equality between its members and between its instances. For all x,y € A, there
is defined a x=y. Definitional equality compares normalized term instances.

Definition 31. (SAR). The universum space is configured with a triple of: i)
sorts, a set of universes U, en indexed over set N; ii) axioms, a set of inclusions
U; : Uj, 4,5 € Ny iii) rules of term dependence universe landing, a set of landings
Ui = Uj : Uxg,j),ijen, where A could be function max (predicative) or snd
(impredicative).

Example 1. (CoC). SAR = {{x,0},{x: O} {i — j : j;i,j € {*x,0}}. Terms
live in universe x, and types live in universe [J. In CoC A = snd.

Example 2. (PTS*, MLTT®).

SAR = {Ui€N7Ui : Uj;i<j;i,j€N7Ui — Uj : U)\(i,j);i,jEN}- Where U; is a universe
of i-level or i-category in categorical interpretation. The working prototype of
PTS* is given in Issue XVI: Pure Type System [19].
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2.6 MLTT-75

Here is given formal model of type-theoretical interpretation of Martin-Lof Type
Theory. It combines 4 Path rules (no eta), 5 II rules, and 6 ¥ rules (two elims).
The proof is provided by direct embedding (internalizing) the model intro the
model of type checker which is even more powerful.

Definition 32. (MLTT-75). The MLTT as a Type is defined by taking all rules
for II, ¥ and Path types into one ¥ telescope or context.

MLIT (A: U): U
= (Pi_Former: (A — U) — U)
* (Pi_Intro: (B: A - U) (a: A) - B a
* (Pi_Elim: (B: A - U) (a: A) - (A —
* (Pi_Compy: (B: A — U) (a: A)
(f: A - B a) — Path (B a)
(Pi_Elim B a(Pi_Intro B a(f a)))(f a))
(Pi_ Compz: (B: A — U) (a: A)
(f: A5 B a) - Path (A - B a) f (\(x:A) — f x))
(Sigma Former: (A — U) — U)
(Sigma Intro: (B: A — U) (a: A) (b: B a) — Sigma A B)
* (Sigma Eliml: (B: A — U)
(_: Sigma A B) — A)
(Sigma Elim2: (B: A — U)
(x: Sigma A B) — B (prl A B x))
(Sigma Compl: (B: A — U) (a: A) (b: B a)
— Path A a (Sigma Eliml B (Sigma Intro B a b)))
(Sigma Comp2: (B: A — U) (a: A)
(b: B a) — Path (B a) b
(Sigma Elim2 B (a,b)))
(Sigma Comp3: (B: A — U) (p: Sigma A B)
— Path (Sigma A B) p (prl A B p,pr2 A B p))
* (Id_Former: A — A — U)
(Id_Intro: (a: A) — Path A a a)
* (Id_Elim: (x: A) (C: D A)
(d: C x x (Id_Intro x))
(y: A) (p: Path Axy) - Cx y p)
* (Id_Comp: (a:A)(C: D A)
(d: C a a (Id_Intro a)) —
Path (C a a (Id Intro a))
d (Id Elim a Cd a (Id Intro a))) * U

18



Theorem 22. (Model Check). There is an instance of MLTT.
instance (A: U): MLIT A
= (Pi A, lam A, app A,
Beta A, Eta A,
Sigma A, dpair A, prl A, pr2 A,
Betal A, Beta2 A, Eta2 A,
Path A, refl A, J A,
J comp A, A)

Cubical Model Check

The result of the work is a |mltt.ctt| file which can be runned using |cubicaltt|.
Note that computation rules take a seconds to type check.
cubicaltt — 6 second.

Arend — 1 second.
Agda (cubical) — & 2 second.

Conclusions

In this issue the type-theoretical model (interpretation) of MLTT was presented
in cubical syntax and type checked in it. This is the first constructive proof of
internalization of MLTT.

From the theoretical point of view the landspace of possible interpretation
was shown corresponding different mathematical theories for those who are new
to type theory. The brief description of the previous attempts to internalize
MLTT could be found as canonical example in MLTT works, but none of them
give the constructive J eliminator or its equality rule.

Type theoretical cubical constructions was given for the Path types along
the article for other interpretations, all of them were taken from our Groupoid
Infinity ” base library.

The objective of complete derivability of all eliminators, computational and
uniquness rules is a basic objective for constructive mathematics as mathemat-
ical reasoning implies verification and mechanization. Yes cubical type system
represent most compact system that make possible derivability of all theorems
for core types which make this system as a first candidate for the metacircular
type checker.

Also for programming purposes we may also want to investigate Fixpoint as
a useful type in coinductive and modal type theories and harmful type in the-
oretical foundation of type systems. Elimination the possibility of uncontrolled
Fixpoint is a main objective of the correct type system for reasoning without
paradoxes. By this creatiria we could filter all the fixpoint implementations be-
ing condidered harmful.

Without a doubt the core type that makes type theory more like program-
ming is the inductive type system that allows to define type families. In the

"https://groupoid.space/
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Tabm. 2: *
Table. Core Features

Lang II ¥ = Path U*>® Co/Fix Lazy
PTS X

Cedile, MLTT x x x

Henk X X

Per X X X X

Lean, Agda X X X X

NuPRL X X X X

System-D X X X X
cubicaltt X X X X X

following Issue II will be shown the semantics and embedding of inductive types
with several types of Inductive-Recursive encodings.

Taba. 3: *
Table. Inductive Type Systems

Lang Co/Inductive  Quot/Trunc HITs
System-D X
Lean X X
NuPRL X X
Arend X X X
Agda, Coq X X
cubicaltt, yacctt, RedPRL X X

Further research of the most pure type theory on a weak fibrations and
pure Kan oprations without interval lattice structure (connections, de Morgan
algebra, connection algebras) and diagonal coersions could be made on the way
of building a minimal homotopy core [2].

The next language after Henk and Per will be Anders with homotopy type
system and infinite number of universes. Along with Joe cartesian interpreter
this evaluators form a set of languages as a part of conceptual model of theorem
proving system with formalized virtual machine as extraction target.
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Tabum. 4: *
Table. Cubical Type Systems

Lang Interval Diagonal Kan/Coe
BCH, cubical 0O—=>r,1—r
CCHM, cubicaltt, Agda VA 0—>1
Dedekind V,A 0—-1,1—0
AFH/ABCFHL, yacctt X r—s
HTS/CMS r — s, weak

Further Research

This article opens the door to a series that will unvail the different topics of
homotopy type theory with practical emphasis to cubical type checkers. The
Foundations volume of articles define formal programming language with geo-
metric foundations and show how to prove properties of such constructions. The
second volume of article is dedicated to cover the programming and modeling
of Mathematics.

Issue I: Type Theory. The first volume of definitions gathered into one
article dedicated to various [], Y. and == properties and internalization of
MLTT in the host language typechecker.

Issue II: Inductive Types. This episode tales a story of inductive types,
their encodings, induction principle and its models.

Issue III: Homotopy Type Theory. This issue is try to present the
Homotopy Type Theory without higher inductive types to neglect the core and
principles of homotopical proofs.

Issue IV: Higher Inductive Types. The metamodel of HIT is a theory
of CW-complexes. The category of HIT is a homotopy category. This volume
finalizes the building of the computational theory.

Issue V: Modalities. The constructive extensions with additional context
and adjoint transports between toposes (cohesive toposes). This approach serves
the needs of modal logics, differential geometry, cohomology.

The main intention of Foundation volume is to show the internal language
of working topos of CW-complexes, the construction of fibrational sheaf type
theory.

Issue XVI: Pure Type System. Pure Type System named after Henk
Barendregt.

Issue XVII: Inductive Type System. Inductive Type System named
after Per Martin-Lof.

Issue XIX: Modal Homotopy Type System. Modal Homotopy Type
System named after Anders Mortberg.
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3 Inductive Encodings

3.1 Church Encoding

You know Church encoding which also has its dependent alanolgue in CoC,
however in Coq it is imposible to detive Inductive Principle as type system
lacks fixpoint and functional extensionality. The example of working compiler
of PTS languages are Om and Morte. Assume we have Church encoded NAT:

nat = (X:U) —> (X > X) > X > X

where first parameter (X — > X) is a suce, the second parameter X is zero,
and the result of encoding is landed in X. Even if we encode the parameter
list (A: U) = (X:U) >X—> (A >X) >X

and paremeter A let’s say live in 42 universe and X live in 2 universe, then
by the signature of encoding the term will be landed in X, thus 2 universe.
In other words such dependency is called impredicative displaying that landed
term is not a predicate over parameters. This means that Church encoding

is incompatible with predicative type checkers with predicative of predicative-
cumulative hierarchies.

3.2 Scott Encoding

3.3 Parigot Encoding

3.4 CPS Encoding

3.5 Interaction Networks Encoding

3.6 Impredicative Encoding
In HoTT n-types is encoded as n-groupoids, thus we need to add a predicate in
which n-type we would like to land the encoding:
NAT (A: U) = (X:U) — isSet X > X > (A > X) > X
Here we added isSet predicate. With this motto we can implement propo-

sitional truncation by landing term in isProp or even HIT by langing in is-
Groupoid:

TRUN (A:U) type = (X: U) — isProp X > (A > X) —> X

S1 = (X:U) —> isGroupoid X —> ((x:X) —> Path X x x) > X

MONOPLE (A:U) = (X:U) — isSet X > (A > X) —> X

NAT = (X:U) — isSet X > X —> (A > X) > X

The main publication on this topic could be found at [11] and [10].

The Unit Example

Here we have the implementation of Unit impredicative encoding in HoTT.
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upPath XY:U)(f:X>Y)(a:X>X): X-—>Y=0XXYf a
downPath (X Y:U) (f:X>Y)(b:Y>Y): X >Y=0XYYb f
naturality (X Y:U) ({:X>Y) (a:X>X) (b:Y>Y): U

= Path (X—=>Y) (upPath XY f a)(downPath XY f b)

unitEnc’: U = (X: U) = isSet X > X > X
isUnitEnc (one: unitEnc’): U
= (X Y:U)(x:isSet X)(y:isSet Y) (f:X>Y) —
naturality XY f (one X x)(one Y y)

unitEnc: U = (x: unitEnc’) * isUnitEnc x
unitEncStar: unitEnc = (\(X:U)(_:isSet X) —>
idfun X,\ (X Y: U)(_:isSet X)(_:isSet Y)—>refl (X>Y))
unitEncRec (C: U) (s: isSet C) (c¢: C): unitEnc —> C
= \(z: unitEnc) —> z.1 C s c
unitEncBeta (C: U) (s: isSet C) (c: C)

Path C (unitEncRec C s ¢ unitEncStar) ¢ = refl C ¢
unitEncEta (z: unitEnc): Path unitEnc unitEncStar z = undefined
unitEncInd (P: unitEnc —> U) (a: unitEnc): P unitEncStar —> P a

= subst unitEnc P unitEncStar a (unitEncEta a)
unitEncCondition (n: unitEnc’): isProp (isUnitEnc n)
= \ (f g: isUnitEnc n) —

<h> \ (x y: U) —> \ (X: isSet x) —> \ (Y: isSet y)
—> \ (F: x >y) ><i>\ (R: x) >Y (F (nxXR)) (nyY (FR))
(<j>f x yXYFQ@QjR) (<j>gxyXYFQjR)Qha@ i

3.7 Lambek Encoding: Homotopy Initial Algebras
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4 Inductive Types
41 W

Well-founded trees without mutual recursion represented as W-types.

Definition 33. (W-Formation). For A : U/ and B : A — U, type W is defined
as W(A,B) : U or
W(x;A)B(:c) ‘U.

def W (A :U) (B: A=U) : U :=W (x : A), Bx

Definition 34. (W-Introduction). Elements of W ,.4)B(z) are called well-
founded trees and created with single sup constructor:

sup : W, 4)B(x).

def sup$’$ (A: U) (B: A—-U) (x: A) (f: Bx —-W AB)
:' W AB
;= sup AB x f

Theorem 23. (Induction Principle indw). The induction principle states that
for any types A : Y and B : A — U and type family C over W(A, B) and the
function g : G, where

¢=]1 11 I c(r@)sc(sup(a, £))

@A f:B(x)BW(A,B) b:B(z)

there is a dependent function:

mdw: J[ O TIIT 11 T et

C:W(A,B)8U g:G a:A f:B(a)BW(A,B) b:B(a)

def W-ind (A : U) (B : A= TU)
(C: W(x : A), Bx) =1
(g T (x : A) (f : Bx—> W(x:A), Bx)),
(IT (b : Bx), C(fb)) —-C (sup ABx f))
(a : A) (f : Ba— W (x : A), Bx)) (b : B a)
:C (fb) :=indVABCg (fb)

Theorem 24. (indw Computes). The induction principle indW satisfies the
equation:
indw-5 : g(a, f, \b.ind" (g, (b))
=def indw (g,sup(a, f)).

def ind"-8 (A : U) (B : A—=1U)
(C: Wi(x : A), Bx) »>U) (g : II (
(f : Bx—=> W(x : A), Bx)), ( (b:BX),C(fb))%C(supABXf))
(a : A) (f : Ba—> W (x : A), Bx)
: PathP (< > C (sup A B a f))
(indV ABC g (sup AB a f))
(gaf (AMN(b:Ba), ind ABCg (fb)))

b
=<>gaf (A(b:Ba), ind"ABCg (fb))
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4.2
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4.3 Empty

The Empty type represents False-type logical 0, type without inhabitants, void
or L (Bottom). As it has not inhabitants it lacks both constructors and elimi-
nators, however, it has induction.

Definition 35. (Formation). Empty-type is defined as built-in 0-type:
0:U.
Theorem 25. (Induction Principle indp). O-type is satisfying the induction
principle:
indy : H H C(z).
C:0—->Uz:0
def Empty—ind (C: 0 - U) (z: 0) : C z := indo (C z) =z
Definition 36. (Negation or isEmpty). For any type A negation of A is defined

as arrow from A to O:
-A:=A—0.

def isEmpty (A: U): U :=A—=0

The witness of = A is obtained by assuming A and deriving a contradiction.
This techniques is called proof of negation and is applicable to any types in
constrast to proof by contradiction which implies =——A — A (double negation
elimination) and is applicable only to decidable types with —A 4+ A property.
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4.4 Unit

Unit type is the simplest type equipped with full set of MLTT inference rules.
It contains single inhabitant x (star).
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4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

Bool

Maybe

Either

Nat

List
Vector
Stream

Interpreter

31



Jliteparypa

(1]

2]

13

[4]

5]

[6]

7]

18]

19]

[10]

[11]

[12]

[13]

Frank Pfenning and Christine Paulin-Mohring, Inductively Defined Types
in the Calculus of Constructions, in Proc. 5th Int. Conf. Mathe-
matical Foundations of Programming Semantics, 1989, pp. 209-228.
doi:10.1007/BFb0040259

Christine Paulin-Mohring, Inductive Definitions in the System Coq: Rules
and Properties, in Typed Lambda Calculi and Applications (TLCA), 1993,
pp- 328-345. doi:10.1007/BFb0037116

Christine Paulin-Mohring, Defining Inductive Sets in Type Theory, in: G.
Huet and G. Plotkin (eds), Logical Environments, Cambridge University
Press, 1994, pp. 249-272.

Peter Dybjer, Inductive Sets and Families in Martin-Ldf’s Type Theory
and Their Set-Theoretic Semantics, Lecture Notes in Computer Science,

530, 1991, pp. 280-306. doi:10.1007/BFb0014059

Peter Dybjer, Inductive Families, Formal Aspects of Computing, 6(4), 1994,
pp. 440-465. doi:10.1007/BF01211308

Peter Dybjer, Representing inductively defined sets by wellorderings in
Martin-Lof’s type theory, Theoretical Computer Science, 176(1-2), 1997,
pp. 329-335. doi:10.1016/50304-3975(96)00145-/

Martin Hofmann, FExtensional Constructs in Intensional Type Theory,
PhD thesis, University of Edinburgh, 1995. https://www2.informatik.
uni-freiburg.de/ “mhofmann/phdthesis.pdf

Martin Hofmann, Syntax and Semantics of Dependent Types, in: Semantics
and Logics of Computation, 1995, pp. 79-130.

Newstead, C. (2018). Algebraic Models of Dependent Type Theory. PhD
thesis, Carnegie Mellon University. Available at https://arxiv.org/abs/
2103.06155.

Sam Speight, Impredicative Encoding of Inductive Types in HoTT, 2017.
https://github.com/sspeight93/Papers/

Steve Awodey, Impredicative Encodings in HoTT, 2017. https://wuw.
newton.ac.uk/files/seminar/20170711090010001-1009680.pdf

Steve Awodey. Type theory and homotopy, 2010. https://arxiv.org/abs/
1010.1810

Thorsten Altenkirch, Neil Ghani, Peter Hancock, Conor McBride, and
Peter Morris. Indexed Containers. Logical Methods in Computer Science,
18(2), 2022, pp. 15:1-15:37. https://lmcs.episciences.org/

32



[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Marcelo P. Fiore, Andrew M. Pitts, and S. C. Steenkamp. Quotients, In-
ductive Types, € Quotient Inductive Types. University of Cambridge, 2022.
https://arxiv.org/pdf/1705.07088

Thorsten  Altenkirch, Neil Ghani, and Peter Morris. Contain-
ers—Constructively, 2012. https://arxiv.org/pdf/1201.3898

Thorsten Altenkirch, Conor McBride, and James Chapman. Towards Ob-
servational Type Theory, 2013. https://arxiv.org/pdf/1307.2765

Peter Dybjer, Representing inductively defined sets by wellorderings in
Martin-Lof’s type theory, Theoretical Computer Science, 176(1-2), 1997,
pp. 329-335. doi:10.1016/50304-3975(96)00145-/

Ieke Moerdijk and Erik Palmgren, Wellfounded trees in categories, Annals
of Pure and Applied Logic, 104(1-3), 2000, pp. 189-218. doi:10.1016/50168-
0072(00)00012-9

Michael Abbott, Thorsten Altenkirch, and Neil Ghani, Containers: Con-
structing strictly positive types, Theoretical Computer Science, 342(1), 2005,
pp. 3-27. doi:10.1016/4.tcs.2005.06.002

Benno van den Berg and Ieke Moerdijk, W-types in sheaves, 2008. https:
//arxiv.org/abs/0810.2398

Nicola Gambino and Martin Hyland, Wellfounded Trees and Dependent
Polynomial Functors, in TYPES 2003, LNCS 3085, Springer, 2004, pp.
210-225. doi:10.1007/978-3-540-24849-1 14

Michael Abbott, Thorsten Altenkirch, and Neil Ghani, Representing Nested
Inductive Types using W-types, in ICALP 2004, LNCS 3142, Springer, 2004,
pp. 124-135. doi:10.1007/978-3-540-27836-8 8

Steve Awodey, Nicola Gambino, and Kristina Sojakova, Inductive types in
homotopy type theory, LICS 2012, pp. 95-104. doi:10.1109/LICS.2012.21,
https://arxiv.org/abs/1201.3898

Benno van den Berg and Ieke Moerdijk, W-types in Homotopy Type Theory,
Mathematical Structures in Computer Science, 25(5), 2015, pp. 1100-1115.
doi:10.1017/50960129514000516, https://arxiv.org/abs/1307.2765

Kristina Sojakova, Higher Inductive Types as Homotopy-Initial
Algebras, ACM SIGPLAN Notices, 50(1), 2015, pp. 31-42.
doi:10.1145/2775051.2676983, https://arxiv.org/abs/1402.0761

Steve Awodey, Nicola Gambino, and Kristina Sojakova, Homotopy-initial
algebras in type theory, Journal of the ACM, 63(6), 2017, Article 45.
doi:10.1145/3006383, https://arxiv.org/abs/1504.05531

33



[27]

28]

[29]

[30]

[31]

[32]

Christian Sattler, On relating indexed W-types with ordinary ones,
in TYPES 2015, pp. 71-72. https://types2015.inria.fr/slides/
sattler.pdf

Per Martin-Lof, Constructive Mathematics and Computer Programming, in:
Proc. 6th Int. Congress of Logic, Methodology and Philosophy of Science,
1979. Studies in Logic and the Foundations of Mathematics 104 (1982), pp.
153-175. doi:10.1016/50049-237X(09)70189-2

Per Martin-Lof (notes by Giovanni Sambin), Intuitionistic type theory, Lec-
ture notes Padua 1984, Bibliopolis, Napoli (1984).

Jasper Hugunin, Why Not W? LIPIcs, 188 (TYPES 2020), 2021.
d0i:10.4230/LIPIcs. TYPES.2020.8

Nils Anders Danielsson, Positive h-levels are closed under W, 2012. https:
//www.cse.chalmers.se/ nad/listings/w-level/WLevel.html

Jasper Hugunin, IWTypes Repository. https://github.com/jashug/
IWTypes

34



Issue III: Homotopy Type Theory

Maksym Sokhatskyi *

! National Technical University of Ukraine
Igor Sikorsky Kyiv Polytechnical Institute
5 tpasHsa 2025 p.

Amnorairis

Here is presented destinctive points of Homotopy Type Theory as an
extension of Martin-Lof Type Theory but without higher inductive types
which will be given in the next issue. The study of identity system is given.
Groupoid (categorical) interpretation is presented as categories of spaces
and paths between them as invertible morphisms. At last constructive
proof Q(S') = Z is given through helix.
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5 Groupoid Interpretation

5.1 Introduction: Type Theory

Type theory is a universal programming language for pure mathematics, de-
signed for theorem proving. It supports an arbitrary number of consistent ax-
ioms, structured as pseudo-isomorphisms consisting of encode functions (meth-
ods for constructing type elements), decode functions (dependent eliminators
of the universal induction principle), and their equations—beta and eta rules
governing computability and uniqueness.

As a programming language, type theory includes basic primitives (axioms
as built-in types) and accompanying documentation, such as lecture notes or
textbooks, explaining their applications, including:

e Function (IT)

e Context (X)

e Identification (=)
e Polynomial (W)
e Path (B)

e Gluing (Glue)

e Infinitesimal (J)

e Complex (HIT)

Students (10) are tasked with applying type theory to prove an initial but
non-trivial result addressing an open problem in one of the following areas of-
fered by the Department of Pure Mathematics (KM-111):

Homotopy Theory

Homological Algebra
Mathematics := ¢ Category Theory

Functional Analysis

Differential Geometry
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5.2 Motivation: Homotopy Type Theory

The primary motivation of homotopy type theory is to provide computational se-
mantics for homotopic types and CW-complexes. The central idea, as described
in, is to combine function spaces (II), context spaces (X), and path spaces (Z)
to form a fiber bundle, proven within HoTT to coincide with the II type itself.
Key definitions include:

def contr (A: U) : U :=% (x: A), II (y: A), EAxy

def fiber (A B: U) (f: A—-B) (y: B): U :=3% (x: A), Path By (f x)
def isEquiv (A B: U) (f: A—-B): U :=1I (y: B), contr(fiber AB f y)
def equiv (XY: U): U :=% (f: X—=Y), isEquiv X Y f

def uva (AB : U) (p : EUAB) : equiv AB

:= transp (<i> equiv A (p @ i)) 0 (idEquiv A)

The absence of an eta-rule for equality implies that not all proofs of the same
path space are equal, resulting in a multidimensional co-groupoid structure for
path spaces. Further definitions include:

def isProp (A : U) : U
:=1I (ab : A), EAab

def isSet (A : U) : U
=1II (a b : A) (xy :

[1]

Aab), E(EAab)xy

def isGroupoid (A : U) : U
(ab:A) (xy:EAab) (ij:EZ(EAab)xy),
(E(EAab)xy)i]

m =

The groupoid interpretation raises questions about the existence of a lan-
guage for mechanically proving all properties of the categorical definition of a
groupoid:

def CatGroupoid (X : U) (G : isGroupoid X)
isCatGroupoid (PathCat X)
= (idp X,
comp—Path X,
G7
sym X,
comp—inv—Path™! X,
comp—inv—Path X,
comp—Path—left X,
comp—Path—right X,
comp—Path—assoc X,
*
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5.3 Metatheory: Adjunction Triples

The course is divided into four parts, each exploring type-axioms and their
meta-theoretical adjunctions.

5.3.1 Fibrational Proofs
YA f A1

Fibrational proofs are modeled by primitive axioms, which are type-theoretic
representations of categorical meta-theoretical models of adjunctions of three
Cockett-Reit functors, giving rise to function spaces (II) and pair spaces (X).
These proof methods enable direct analysis of fibrations.

5.3.2 Equality Proofs
Q1=4C

In intensional type theory, the equality type is embedded as type-theoretic
primitives of categorical meta-theoretical models of adjunctions of three Jacobs-
Lambek functors: quotient space (Q), identification system (=), and contractible
space (C). These methods allow direct manipulation of identification systems,
strict for set theory and homotopic for homotopy theory.

5.3.3 Inductive Proofs
WH6o-4AM

Inductive types in type theory can be embedded as polynomial functors (W,
M) or general inductive type schemes (Calculus of Inductive Constructions),
with properties including: 1) Verification of program finiteness; 2) Verification
of strict positivity of parameters; 3) Verification of mutual recursion.

In this course, induction and coinduction are introduced as type-theoretic
primitives of categorical meta-theoretical models of adjunctions of polynomi-
al functors (Lambek-Bohm), enabling manipulation of initial and terminal al-
gebras, algebraic recursive data types, and infinite processes. Higher inductive
proofs, where constructors include path spaces, are modeled by polynomial func-
tors using monad-algebras and comonad-coalgebras (Lumsdaine-Shulman).

Historical Notes

Homotypy Type Theory takes its origins in 1996 from groupoid interpretation
by Hofmann and Streicher’s, and later (in 10 years) was formalized by Awodey,
Warren and Voevodsky. Voevodsky constrtucted Kan simplicial sets interpreta-
tion of type theory and discovered the property of this model, that was named
univalence. This property allows to identify isomorphic structures in terms of
type theory.
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Homotopy type theory to classical homotopy theory is like Euclidian synteth-
ic geometry (points, lines, axioms and deduction rules) to analytical geometry
with cartesian coordinates on R™ (geometric and algebraic)?.

In the same way as inductive types extends MLTT for inductive program-
ming, the higher inductive types (HIT) extend homotopy type theory for geom-
etry programming. You can directly encode CW-complexes by using HIT. The
definition of HIT syntax will be given in the next Issue IV: Higher Inductive
Types.

Cubical with HITs has very lightweight core and syntax, and is an internal
language of (0o, 1)-topos. Cubical with [0, 1] Path types but without HITs is an
internal language of (0o, 1)-categories, while MLTT is an internal language of
locally cartesian closed categories.

Acknowledgement

This article is dedicated to Ihor Horobets and written on his request for clarifi-
cation and direct intoduction to HoTT.

1We will denote geometric, type theoretical and homotopy constants bold font R while
analitical will be denoted with double lined letters R.
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6 Homotopy Type Theory

6.1 Identity Systems

Definition 37. (Identity System). An identity system over type A in universe
X, is a family R: A — A — X, with a function r¢ : II;. 4 R(a, a) such that any
type family D : I, 5.4 R(a,b) — X; and d : II;.4D(a, a,7m9(a)), there exists a
function f : g p. Al r(a,p)D(a, b, r) such that f(a,a,ro(a)) = d(a) for all a : A.

def IdentitySystem (A : U) : U
=3 (=form : A— A —>T)

=-ctor : Il (a : A), =form a a)
=-elim : II (a : A) (C: II (x y : A)
(p : =form x y), U)
(d : Caa (=ctor a)) (y : A)
(p : =form a y), Cay p)
(=comp : Il (a : A) (C: II (x y : A)
(p : =form x y), U)

(d : Caa (=ctor a)),
2 (C a a (=ctor a)) d
(=elim a Cd a (=-ctor a))), 1

Example 3. There are number of equality signs used in this tutorial, all of
them listed in the following table of identity systems:

Sign  Meaning
=gef Definition
Id

Path
Equivalence
Isomorphism
Homotopy
Bisimulation

1

Q

Theorem 26. (Fundamental Theorem of Identity System).

Definition 38. (Strict Identity System). An identity system over type A and
universe of pretypes V; is called strict identity system (=), which respects UIP.

Definition 39. (Homotopy Identity System). An identity system over type A
and universe of homotopy types U; is called homotopy identity system (=),
which models discrete infinity groupoid.
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6.2 Path (%)

The homotopy identity system defines a Path space indexed over type A with
elements as functions from interval [0, 1] to values of that path space [0, 1] — A.
HoTT book defines two induction principles for identity types: path induction
and based path induction.

Definition 40. (Path Formation).

2 U =gey H H Path 4(z,y).

AU z,y:A

def 2 (A :U) (xy : A) : U
:= PathP (<> A) x y

def 2 (A : U) (xy : A)
=0 (i : 1),
AJoi|—>[(i=0)—>x,
=1 =y ]

Definition 41. (Path Introduction). Returns a reflexivity path space for a
given value of the type. The inhabitant of that path space is the lambda on the
homotopy interval [0, 1] that returns a constant value x. Written in syntax as

id=: 2 =4 & =gey H H[z]x

AU z:A

def idp (A: U) (x: A)
tEAx x =< >X

Definition 42. (Path Application).

def at0 (A: U) (a b: A)
(p: Path Aab) : A:=p@o0

def atl (A: U) (a b: A)
): A

(p: Path A a b =p @1
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Definition 43. (Path Connections). Connections allow you to build a square
with only one element of path: i) [i, j]p @ min(i, j); i) [¢, j]p @ max (i, j).

p L Py

1{ [{b| [i]a o

a—2sb a4

>
S

def join (A: U) (a b: A) (p: Path A a b)
: PathP (<x> Path A (p@x) b) p (<i> b)
=<y x>p @ (x \/ vy)

def meet (A: U) (a b: A) (p: Path A a b)
: PathP (<x> Path A a (p@x)) (<i> a) p
=<x y>p @ (x /\ y)

Definition 44. (Path Inversion).

Theorem 27. (Congruence).
ap : f(a) = f(b) =qey

ITIT IT II II wrwed.

AU a,x:A B:A—U f:II(A,B) p:a=azx

def ap (A B: U) (f: A —> B)
(a b: A) (p: Path A a b)
: Path B (f a) (f b)

def apd (A: U) (a x: A) (B: A —> U)
(f: A—> B a) (b: B a) (p: Path A a x)
: Path (B a) (f a) (f x)

Maps a given path space between values of one type to path space of another
type using an encode function between types. Implemented as a lambda defined
on [0,1] that returns application of encode function to path application of the
given path to lamda argument [¢] f(p@i) in both cases.
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Definition 45. (Generalized Transport Kan Operation). Transports a value of
the left type to the value of the right type by a given path element of the path
space between left and right types.

transport : A(0) — A(1) =g

II 11

A:I—=U r:1
Az, transp([i]A(4), 0, x).

def transp’ (A: U) (x y: A) (p : PathP (&lt; >A) x y) (i: I)
:= transp (&lt;i> (\(_:A),A) (p@i)) i x

def transp” (A B: U) (p : PathP (&lt; >U) A B) (i: I)
:= transp (&lt;i> (\(_:U),U) (p@i)) i A

Definition 46. (Partial Elements).

Partial : V =g H HPartial(A, i).
AU i:1

def Partial’ (A : U) (i : I)
: V := Partial A i

Definition 47. (Cubical Subtypes).

Subtype : V =g4ef

H H Ali — u].

A:U i:1 w:Partial(A,i)

def sub (A : U) (i : I) (u : Partial A i)

Definition 48. (Cubical Elements).
inS:A[(i=1)— a] =gey
H H H inc(4,1,a).
AU i1 a:A
outS: A [i = u] > A =gy

H H H ouc(a).

A:U i:I u:Partial(A,i)

def inS (A : U) (i : I) (a : A)
:sub Ai [(i =1) >a] :=inc A i a

def outS (A : U) (i : I) (u : Partial A i)
:AJi—ul —> A :=X (a: A[i — u]), ouc a
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Theorem 28. (Heterogeneous Composition Kan Operation).

compgcuy ¢ A(0) [r = w(0)] = A(1) =aes

I 10

A:U r:I w:Il; Partial(A(z),r)
Aug, hcomp(A(1), r, \i.
[(r=1) = transp([]A(i/), i, u(i, 1=1))],
transp([i]A(i), 0, ouc(up))).
def compCCHM (A : I - U) (r : I)
(u : II (i : I), Partial (A i) r)
(up : (A O)[r—muo0]) : A1
:= hcomp (A 1) r (XA (1 : I),
[ (r = 1) = transp (<j> A (i VvV j)) i (ui 1=1)])

(transp (<i> A i) 0 (ouc ug))

Theorem 29. (Homogeneous Composition Kan Operation).

compegy ¢ A [r—= u(0)] > A =g4ey

A:U r:I u:I—Partial(A,r)
Aug, hcomp(A4, r, u, ouc(ug)).
def compCHM (A : U) (r : I)

(u : I - Partial A r) (up : A[lr —u 0]) : A
:= hcomp A r u (ouc ug)

Theorem 30. (Substitution).

subst : P(x) — P(y) =geys

11 IT 1T 11
A:U P:A—U z,y: A p:x=y
Ae.transp([i| P(p@i), 0, e).

def subst (A: U)

(P: A—=>TU) (x y: A)
:Px-—>Py

(p: Path A x y)
=X (e: P x), transp (<i>P (p @ 1i)) 0 e

Other synonyms are mapOnPath and cong.
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Theorem 31. (Path Composition).

a pcomp c
[i]aT qT
@7 ?
def pcomp (A: U) (a b c: A)
(p: Path A a b) (q: Path A b ¢)
: Path A a ¢ := subst A (Path A a) b c qp

Composition operation allows building a new path from two given paths in
a connected point. The proofterm is comp([i]Path 4 (a, ¢@3), p, []).

Theorem 32. (J by Paulin-Mohring).

def J (A: U) (a b: A)
(P: singl A a —> U)
(u: P (a,refl A a))
: II (p: Path A a b), P (b,p)

J is formulated in a form of Paulin-Mohring and implemented using two facts
that singletons are contractible and dependent function transport.

Theorem 33. (Contractability of Singleton).
def singl (A: U) (a: A) : U
=3 (x: A), Path A a x

def contr (A: U) (a b: A) (p: Path A a b)
: Path (singl A a) (a,<>a) (b,p)

Proof that singleton is contractible space. Implemented as [i](p@i, [j]p@Q(i A
7))-
Theorem 34. (HoTT Dependent Eliminator).
def J (A: U) (a: A)
(C: (x: A) — Path A a x — U)

(d: C a (refl A a)) (x: A)
: II (p: Path A ax) : Cxp

Theorem 35. (Diagonal Path Induction).

def D (A: U) : U
=1 (x y: A), Path Ax y > U

def J (A: U) (x: A) (C: DA)
(d: C x x (refl A x))
(v: A)
: II (p: Path Axy), Cxyp
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Theorem 36. (Path Computation).

def trans comp (A: U) (a: A)
: Path A a (trans A A (<> A) a)

def subst _comp (A: U) (P: A —>U) (a: A) (e: P a)
: Path (P a) e (subst AP a a (refl A a) e)

def J comp (A: U) (a: A)
(C: (x: A) —> Path A a x —> U)
(d: C a (refl A a))
: Path (C a (refl Aa)) d
(JAaCda (refl A a))

Note that in HoTT there is no Eta rule, otherwise Path between element
would requested to be unique applying UIP at any Path level which is prohibited.
UIP in HoTT is defined only as instance of n-groupoid, see the PROP type.
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6.3 Glue

Glue types defines composition structure for fibrant universes that allows par-
tial elements to be extended to fibrant types. In other words it turns equivalences
in the multidensional cubes to path spaces. Unlike ABCHFL, CCHM needn’t
another universe for that purpose.

Definition 49. (Glue Formation). The Glue types take a partial family of types
A that are equivalent to the base type B. These types are then “glued” onto B
and the equivalence data gets packaged up into a new type.

Glue(4, p,e) : U.

def Glue’ (A : U) (¢ : I)
(e : Partial (X (T : U), equiv T A) ¢) : U
= Glue A ¢ e

Definition 50. (Glue Introduction).

glue ¢ u (ouc a) : Glue A [p=1+— (T, f)].

def glue’ (A : U) (¢ : I)
(u : Partial (X (T : U), equiv T
(a : A= [(p=1) = (u 1=1).2.
:= glue ¢ u (ouc a)

=
= X
—~ 4

Definition 51. (Glue Elimination).

unglue(b) : A [p — f(b)].

def unglue’ (A : U) (¢: I)
(e : Partial (X (T : U), equiv T A) ¢)
(a : Glue A p e) : A

:= unglue ¢ e a

Theorem 37. (Glue Computation).
b = glue [p — b] (unglue b).
Theorem 38. (Glue Uniqueness).

unglue (glue [p — t] a) = a: A.
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6.4 Fibration

Definition 52 (Fiber). The fiber of the map p: E — B at a point y : B is the
set of all points x : E such that p(z) = y.

fiber (E B: U) (p: E—>B) (y: B): U
= (x: E) *EBy (px)

Definition 53 (Fiber Bundle). The fiber bundle ' — E £ B on a total space
E with fiber layer F' and base B is a structure (F, E,p, B), where p: E — B is
a surjective map with the following property: for any point y : B there exists a
neighborhood U, for which there is a homeomorphism

f:p N Uy) = Uy x F

making the following diagram commute:

p~1(Up) —>Ub><F
l/

Definition 54 (Trivial Fiber Bundle). When the total space E is the cartesian
product X(B, F) and p = pry, then such a bundle is called trivial: (F, X(B, F'), pr1, B).

Family (B: U): U=B —> U

total (B: U) (F: Family B): U = Sigma B F

trivial (B: U) (F: Family B): total BF —> B = \(x: total BF) —> x.1
homeo (B E: U) (F: Family B) (p: E-—> B) (y: B):
B

(
fiber EB p y — total F
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Theorem 39 (Fiber Bundle = II). The inverse image (fiber) of the trivial
bundle (F, B x F,pri, B) at a point y : B equals F(y). Proof sketch:

Fy

Th

def
def

[¢)

def

_: isContr B) * (F y)
xy: B) * (: 2Bxy)*(
z: B) * (k: Fz) *ZBzy
z: E) *ZBz.1y

iber (total B F) B (trivial BF) y

Fy)

e e T T

equality is shown using the isoPath lemma and encode/decode functions.

Family (B : U) : Uy :=B—>7U
Fibration (B : U) : Uy :=%X (X : U), X— B

encode—Pi (B : U) (F : B—»U) (y : B)

fiber (Sigma BF) B (pr1 BF) y—>Fy

\ (x : fiber (Sigma B F) B (pr1 BF) y),
subst BF x.1.1 y (<i> x.2 @ —i) x.1.2

decode—Pi (B : U) (F : B—U) (y : B)

: Fy— fiber (Sigma BF) B (pr1 BF) y

: 2 (F y) (transp (<i> F

\(x: Fy), ((y, x), idp By)

decode—encode—Pi (B : U) (F : B—U) (y : B) (x : Fy)
(idp By @i)) 0 x) x
<j> transp (<i> F y) j x

encode—decode—Pi (B : U) (F : B—U) (y : B)
(x : fiber (Sigma B F) B (pr1 BF) y)

: 2 (fiber (Sigma BF) B (pr1 BF) y)

((y, encode—Pi B F y x), idp By) x
<i> ( (x.2 @i, transp (<j>F (x.2 @i Vv —j)) i x.1.2),
<> x.2 @i A j)

Bundle=Pi (B : U) (F : B—»U) (y : B)

PathP (< > U) (fiber (Sigma B F) B (pr1 BF) y) (F y)
iso—Path (fiber (Sigma BF) B (pr1 BF) y) (F y)
(encode—Pi B F y) (decode—Pi B F y)

(decode—encode—Pi B F y) (encode—decode—Pi B F y)
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Definition 55. (Fibration-1) Dependent fiber bundle derived from Z con-
tractability.

def isFBundlel (B: U) (p: B—U) (F: U): Uy
(=X (_: II (b: B), isContr (PathP (< >U) (p b) F)), (II (x: Sigma B p), B)

Definition 56. (Fibration-2). Dependent fiber bundle derived from surjective
function.

def isFBundle2 (B: U) (p: B—U) (F: U): U
=3 (v: U) (w: surjective v B), (I (x: v), PathP (< >U) (p (w.1 x)) F)

Definition 57. (Fibration-3). Non-dependent fiber bundle derived from fiber
truncation.

def im; (A B: U) (f: A—-B): U
=3 (b: B), || |l-1 (I (a : A), Path B (f a) b)

def BAut (F: U): U :=im; 1 U (X (x: 1), F)

def 1-Im; (A B: U) (f: A—»B): im;y AB f - B
=X (x : im;y AB f), x.1

def 1-BAut (F: U): BAut F - U := 1-Imy 1 U (X (x: 1), F)

def classify (E: U) (A’ A: U) (E’: A’ - U) (E: A— U)
(f: A 5 A): U :=1I(x: A’), EU (E’(x)) (E(f(x)))

def isFBundle3 (E B: U) (p: E—B) (F: U): Uy
=3 (X: B— BAut F),
classify E B (BAut F) (A (b: B), fiber EB p b)
(I-BAut F) X

Definition 58. (Fibration-4). Non-dependen fiber bundle derived as pullback
square.
def isFBundle4 (E B: U) (p: E—B) (F: U): Uy
(=X (X: U) (v: surjective X B)
(v’: prod X F = E),
pullbackSq (prod X F) EX B p v.1 v’ (XA (x: prod X F), x.1)
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6.5 Equivalence

Definition 59. (Fiberwise Equivalence). Fiberwise equivalence ~ or Equiv of
function f : A — B represents internal equality of types A and B in the universe
U as contractible fibers of f over base B.

A~B:U =45 Equiv(A,B) : U =4y

)N INNDY 2.

fiA=-By:Bx:Y,. ay=pf(z) w:Es. ay=5f(z)
L =%,.ay=pf(z) W-

def isContr (A: U) : U
=3 (x: A), II (y: A),

1

Axy

def fiber (AB : U) (f: A—»B) (y : B): U
=3 (x : A), EBy (f x)

def isEquiv (AB : U) (f : A—»B) : U
:=1II (y : B), isContr (fiber AB f y)

def equiv (AB : U) : U
=3 (f : A— B), isEquiv AB f

Definition 60. (Fiberwise Reflection). There is a fiberwise instance id~ of
A ~ A that is derived as (id(A), isContrSingl(A)):

id~ : Equiv(4, A4).

def singl (A: U) (a: A): U
=3 (x: A), 2 A ax

def contr (A : U) (ab : A) (p: EAab)
: 2 (singl A a) (eta A a) (b, p)
=<i> (p @i, &lt;j>p @i /\ j)

def isContrSingl (A : U) (a : A) : isContr (singl A a)
:= ((a,idp A a),(\(z:singl A a),contr A a z.1 z.2))

def idEquiv (A : U) : equiv A A
:= (\(a:A) —> a, isContrSingl A)

Theorem 40. (Fiberwise Induction Principle). For any P : A - B — A ~
B — U and it’s evidence d at (B, B,id~(B)) there is a function Ind~. HoTT
5.8.5

Ind~(P,d): (p: A~ B) — P(A, B,p).

def J—equiv (A B: U)
(P: II (A B: U), equiv A B—U)
(d: P B B (idEquiv B))
: II (e: equiv AB), PAB e
= X (e: equiv A B),
subst (single B) (\ (z: single B), P z.1 B z.2)
(B,idEquiv B) (A,e)
(contrSinglEquiv A B e) d
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Theorem 41. (Fiberwise Computation of Induction Principle).

def compute—Equiv (A : U)
(C : I (AB: U), equiv A B—U)
(d: C A A (idEquiv A))
: 2 (CAA (idEquiv A)) d
(ind—Equiv A A C d (idEquiv A))

Definition 61. (Surjective).
isSurjective (A B: U) (f: A— B): U
= (b: B) * pTrunc (fiber A B f b)

surjective (A B: U): U
= (f: A—> B)
* isSurjective A B f

Definition 62. (Injective).
isInjective’ (A B: U) (f: A—> B): U
= (b: B) — isProp (fiber A B f b)

injective (A B: U): U
= (f: A—> B)
* islnjective A B f

Definition 63. (Embedding).

isEmbedding (A B: U) (f: A-—>B) : U

= (x y: A) — isEquiv (EAxy) (EB (f x) (f y)) (cong ABf xy)

embedding (A B: U): U

= (f: A—> B)
* isEmbedding A B f

Definition 64. (Half-adjoint Equivalence).
isHae (A B: U) (f: A—>B): U

= (g: B—>A)

* (eta_: 2 (id A) (o ABA g f) (idfun A))

* (eps_: Z (id B) (o BAB f g) (idfun B))

* ((x: A) = E B (f ((eta_ @ 0) x)) ((eps_ @ 0) (f x)))

hae (A B: U): U
= (f: A > B)
* isHae A B f
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6.6 Homotopy

The first higher equality we meet in homotopy theory is a notion of homotopy,
where we compare two functions or two path spaces (which is sort of dependent
families). The homotopy interval I = [0, 1] is the perfect foundation for definition
of homotopy.

Definition 65. (Interval). Compact interval.

def I : U := inductive { i0 | il | seg : i0 = il }

You can think of I as isomorphism of equality type, disregarding carriers on
the edges. By mapping 40,71 : I to =,y : A one can obtain identity or equality
type from classic type theory.

Definition 66. (Interval Split). The convertion function from I to a type of
comparison is a direct eliminator of interval. The interval is also known as one
of primitive higher inductive types which will be given in the next Issue IV:
Higher Inductive Types.

def pathToHtpy (A: U) (x y: A) (p:

= A
:= split { i0 - x | il —» y | seg @ i

xy) : I =5 A
- p@i }

Definition 67. (Homotopy). The homotopy between two function f,g: X — Y
is a continuous map of cylinder H : X x I — Y such that

{H<x,o> f(a),
H(xz,1) = g(x).

g: X =>Y)
SEY () (gx)
— Y = pathToHtpy Y (f x) (g x) (p x)

homotopy (X Y: U) (f
(p: (x: >I<)
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Definition 68. (funExt-Formation)
funext form (A B: U) (f g: A—>B): U
—=Z(A->B) fg
Definition 69. (funExt-Introduction)
funext (A B: U) (f g: A—> B) (p: (x:A) > E B (f x)

: funext form AB f g
=<i> \(a: A) —>p a @ i

Definition 70. (funExt-Elimination)

happly (A B: U) (f g: A — B) (p: funext form A B f g) (x: A)

: 2B (f x) (g x

)
= cong (A—>B) B (\(h: A—> B) —> apply ABhx) f gp

Definition 71. (funExt-Computation)
funext Beta (A B: U) (f g: A —> B) (p: (x:A) —
(x:A) —> E B (f x) (g x)
= \(x:A) — happly AB f g (funext AB f g p) x

[1

B (

Definition 72. (funExt-Uniqueness)

funext Eta (A B: U) (f g: A—>B) (p: 2 (A—> B) f
: 2 (E (A—>B) f g) (funext AB f g (happly A B
= refl (E(A—>B) f g)p

g)
£
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6.7 Isomorphism

Definition 73. (iso-Formation)

iso Form (A B: U): U = islso AB —

[1
c
>
o8]

Definition 74. (iso-Introduction)
iso_Intro (A B: U): iso Form A B

Definition 75. (iso-Elimination)

iso_Elim (A B: U): EU A B — islso AB

Definition 76. (iso-Computation)

iso Comp (AB : U) (p : EU A B)
: 2 (EUAB) (iso_Intro A B (iso Elim A B p)) p

Definition 77. (iso-Uniqueness)

iso_Unig (A B : U) (p: isIso A B)
: 2 (isIso A B) (iso Elim A B (iso Intro AB p)) p
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6.8 Univalence

Definition 78. (uni-Formation)

univ_Formation (A B: U): U = equiv AB-—>EZUAB

Definition 79. (uni-Introduction)
equivToE (A B: U): univ_Formation A B

= \(p: equiv A B) —> <i> Glue B [(i=0) —> (A,p),
(i=1) —> (B, subst U (equiv B) B B (< >B) (idEquiv B)) |

Definition 80. (uni-Elimination)

pathToEquiv (A B: U) (p: 2 UA B) : equiv AB
= subst U (equiv A) A B p (idEquiv A)

Definition 81. (uni-Computation)

eqToEq (AB : U) (p : EU A B)
: 2 (2 U A B) (equivToPath A B (pathToEquiv A B p)) p
j i> let Ai: U = pQ@i in Glue B
[ (i=0) — (A,pathToEquiv A B p),
(i=1) —> (B, pathToEquiv B B (<k> B)),
(j=1) — (pQ@i,pathToEquiv Ai B (<k>p @ (i \/ k))) |

Definition 82. (uni-Uniqueness)

transPathFun (A B : U) (w: equiv A B)
: 2 (A—> B) w.1 (pathToEquiv A B (equivToPath A B w)).1
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6.9 Loop

Definition 83. (Pointed Space). A pointed type (4, a) is a type A : U together
with a point a : A, called its basepoint.

pointed: U = (A: U) * A
point (A: pointed): A.1

A.2
space (A: pointed): U 1

A
Definition 84. (Loop Space).
Q(A,a) =gef ((a =4 a),refla(a)).

omegal (A: pointed) : pointed
= (2 (space A) (point A) (point A), refl A.1 (point A))

Definition 85. (n-Loop Space).

Q%A a) =4es (4,0)
Q" A, a) =ger Q" (A, a))

omega : nat —> pointed —> pointed = split
zero —> idfun pointed
succ n —> \(A: pointed) —> omega n (omegal A)
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6.10 Groupoid

The first text about groupoid interpretation of type theory can be found in
Francois Lamarche: A proposal about Foundations?. Then Martin Hofmann
and Thomas Streicher wrote the initial document on groupoid interpretation of
type theory?>.

Equality Homotopy oo-Groupoid
reflexivity constant path identity morphism
symmetry inversion of path inverse morphism

transitivity concatenation of paths composition of mopphisms

There is a deep connection between higher-dimentinal groupoids in category
theory and spaces in homotopy theory, equipped with some topology. The cate-
gory or groupoid could be built where the objects are particular spaces or types,
and morphisms are path types between these types, composition operation is a
path concatenation. We can write this groupoid here recalling that it should be
category with inverted morphisms.
cat: U= (A: U) * (A—> A —> 1)
groupoid: U = (X: cat) * isCatGroupoid X
PathCat (X: U): cat = (X,\ (x y:X)—>Path X x y)

def isCatGroupoid (C: cat): U :=X

(id: II (x: C.ob), C.hom x x)
(c: IT (x y z:C.ob), C.hom x y —> C.hom y z —> C.hom x 2z)
(HomSet : II (x y: C.ob), isSet (C.hom x y))
(inv: II (xy: C.ob), C.hom x y —> C.hom y x)
(inv—left: II (x y: C.ob) (p: C.hom x y),

Z (C.hom x x) (¢ xy x p (inv x y p)) (id x))
(inv—right: IT (x y: C.ob) (p: C.hom x y),

E (C.hom y y) (¢ y x y (inv x y p) p) (id y))
(left : IT (x y: C.ob) (f: C.hom x y),

Z (C.hom x y) f (¢ x x y (id x) f))
(right: II (xy: C.ob) (f: C.hom x y),

Z (C.hom x y) f (¢ xy y f (id y)))
(assoc: II (xy zw: C.ob) (f: C.hom x y)

(g: C.hom y z) (h: C.hom z w),
=) (¢ xzw(cxyzfg)h)
(cxywit(cyzwegh)),

[T
a
=
Q
8
w
2

2http://www.cse.chalmers.se/ coquand/Proposal.pdf
3Martin Hofmann and Thomas Streicher. The Groupoid Interpretation of Type Theory.
1996.
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def isProp (A : U) : U
:=1II (a b : A), EAa
def isSet (A : U) : U
=II (ab : A) (xy : E
Z(EAab) xy

[1
>
©
z

def isGroupoid (A : U) : U

:=1II (a b : A) (xy : 2Aab)
(i j :E2(EAab)x
ZE(E(EAab)xy)i]j

def CatGroupoid (X : U) (G : isGroupoid X)
: isCatGroupoid (PathCat X)
= ( idp X,

comp—Path X,

G’

sym X,
comp—inv—Path™! X,
comp—inv—Path X,
comp—Path—left X,
comp—Path—right X,
comp—Path—assoc X,
*

:= <i> hcomp A

def comp—= (A : U
: (
(MG oD,

def comp—inv-="1 (A : U) (a
: 2 (EAaa) (compZE A a
:= <k j> hcomp A (0 j V k)
MG D), [ =0) —a,

(j=1) »p@—i Ak,
(k=1)=al) (p@j A k)
def comp—inv—=2 (A : U) (a b : A) (p : EA ab)
: 2 (EAbb) (compEAbab (<i>p @—i) p)
= <j i> hcomp A (0 i V j)
(k2 1), [(i=0) b,
(j=1) = b,

J

(i

def comp-Z—-left (A : U) (a b : A) (p: EA ab)
: Z (EAab)p (comp=Aaab (<>a)p)

= <j i> hcomp A (& i V —j)
(A (k : I), [(i=0)—a,
(i=1) - p @k,
(j =0 —=pa@i /\ k]) a

def comp—=-right (A : U) (a b : A) (p:
: Z (EAab)p (comp=Aabbrp
:= <j i> hcomp A (0 1 V —j)

AN (k : I), [(1i=0)—a,
(i =1) = b,
(=0 —pa@i]) (p@i

(< > b)

)—=p@j\/k]) (p@—iV]j)



def comp—Z-assoc (A : U) (a b cd : A)
(f ZEAab) (g: EAbc) (h:EAcd
: 2 (EAad) (comp=Aacd (compEAabecfg)h)
(comp—= A a bd f (comp=ZEA b cdgh))
—JAa(A(a:A) (b:A) (f:ZAabh),
IMI(cd:A) (g:EZEAbc) (h:EAcd),
ZE(EAad) (compEAacd (compEAabcfg)h)
(comp—=Z A abd f (compZEAbcdgh)))
: Z2Aac) (h: EAcd),

comp—= A a a ¢ (<> a) g) h)

< > a) (comp= A a cd g h))
d (comp—=-left A a ¢c g @—i) h)

comp-Z-left A ad (comp=2Aacdgh))) bfcdgh
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6.11 Homotopy Groups

Definition 86. (n-th Homotopy Group of m-Sphere).

TS = [|Q" (™) lo-

piS (n: nat): (m: nat) —> U = split
zZero —> sTrunc (space (omega n (bool, false)))
succ x —> sTrunc (space (omega n (Sn (succ x),north)))

Theorem 42. ((S!) =7Z).

data S1 = base
| loop <i> [ (i=0) —> base ,
(i=1) —> base |

loopS1 : U = E S1 base base

encode (x:S1) (p:E S1 base x)
helix x
= subst S1 helix base x p zeroZ

decode : (x:S1) — helix x —> 2 S1 base x = split
base —> looplt
loop @ i —> rem @Q i where
p : EU (Z —> loopS1l) (Z —> loopS1)
= <j> helix (loopl@j) —> E S1 base (loopl@j)
rem : PathP p looplt looplt
corFibl S1 helix (\(x:S1)—>E S1 base x) base
loopIt looplIt loopl (\(n:Z) —>
comp (<i> Z loopS1 (oneTurn (looplt n))
(loopIt (testlsoPath Z Z sucZ predZ
sucpredZ predsucZ n @ i)))
(<i>(lem1It n)@-i) [])

loopSleqZ : Z U Z loopSl1

= isoPath Z loopS1 (decode base) (encode base)
sectionZ retractZ
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6.12 Hopf Fibrations
Example 4. (S' R Hopf Fiber).

data bool = false | true

negBool : bool — bool
= split { false —> true ; true —> false }

negBoolK : (b : bool) —> = bool (negBool (negBool b)) b
= split { false—><i>false;true—><i>true }

negBoolEquiv : equiv bool bool
= (negBool ,gradLemma bool bool negBool negBool negBoolK negBoolK)

S2 : U = susp Sl
S3 : U = susp S2

ua (AB : U) (e : equiv A B) :
<i> Glue B | (i = 0) — (A,e),
(i 1) — (B,idEquiv B) |

moebius : S1 —> U = split
base —> bool
loop @ i —> ua bool bool negBoolEquiv @ i

[1

UAB-=

THO : U= (¢ : S1) * moebius ¢
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Example 5. (5% C Hopf Fiber). S% Fibration was peeoneered by Guillaume
Brunerie.

rot: (x : S1) —> Z S1 x x = split
base —> loopl
loop @ i —> constSquare S1 base loopl @ i

mu : S1 —> equiv S1 S1 = split
base —> idEquiv S1
loop @ i —> equivPath S1 S1 (idEquiv S1)
(idEquiv S1) (<j> \(x : S1) —> rot x @ j) @ i

H: S2 —> U = split
north —> S1
south —> S1
merid x @ i — ua S1 S1 (mu x) @ i

total : U= (¢ : S2) *H ¢

Definition 87. (H-space). H-space over a carrier A is a tuple

AU

e: A

p:A—>A— A

B:I(a: A),ule,a) =a x ula,e) =a

Hy =
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Theorem 43. (Hopf Invariant). Let ¢ : S?"~! — S™ a continuous map. Then
homotopy pushout (cofiber) of ¢ is cofib(¢) = S™ U, D?" has ordinary coho-
mology
Z for k=mn,2n
H*(cofib(¢), Z) =
0 otherwise

Theorem 44. (Four). There are fiber bundles: (S°, S!,p, S1), (S!,S3,p, S?),
(53,57,p,8%), (S7,5,p, S®).

Hence for «, 3 generators of the cohomology groups in degree n and 2n,
respectively, there exists an integer h(¢) that expresses the cup product square
of a as a multiple of § — alla = h(¢)-5. This integer h(¢) is called Hopf invariant
of ¢.

Theorem 45. (Adams, Atiyah). Hopf Fibrations are only maps that have Hopf
invariant 1.
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Issue IV: Higher Inductive Types

Maksym Sokhatskyi *

! National Technical University of Ukraine
Igor Sikorsky Kyiv Polytechnic Institute
May 4, 2019

Amnorairis

CW-complexes are central to both homotopy theory and homotopy
type theory (HoTT) and are encoded in cubical theorem-proving systems
as higher inductive types (HIT), similar to recursive trees for (co)inductive
types. We explore the basic primitives of homotopy theory, which are
considered as a foundational basis in theorem-proving systems.

Keywords: Homotopy Theory, Type Theory

7 CW-Complexes

CW-complexes are spaces constructed by attaching cells of various dimensions.
In HoTT, they are encoded as higher inductive types (HIT), where cells are
constructors for points and paths.

Definition 88. (Cell Attachment). The attachment of an n-cell to a space X
along f:S"! — X is a pushout:

g1 T x

L |

D —2— X Uy D"

Here, ¢ : S"~! < D™ is the boundary inclusion, and X Uy D™ is the pushout
that attaches an n-cell to X via f. The result depends on the homotopy class
of f.

Definition 89. (CW-Complex). A CW-complex is a space X, constructed in-
ductively by attaching cells, with a skeletal filtration:

e (—1)-skeleton: X_; = @.
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e For n > 0, the n-skeleton X,, is obtained by attaching n-cells to X,,_1.
For indices J,, and maps {f; : "' — X,,_1};e,, X, is the pushout:

n?

n71 n . . . . . . .
where HjeJn S HjeJn D™ are disjoint unions, and i, : X,,_1 < X, is
the inclusion.

e X is the colimit:
=X 129Xg=>X]1—=...=> X,

where X, is the n-skeleton, and X = colim,,_,,, X,. The sequence is the
skeletal filtration.

In HoTT, CW-complexes are higher inductive types (HIT) with constructors
for cells and paths for attachment.
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7.1 Introduction: Countable Constructors

Some HITs require an infinite number of constructors for spaces, such as Eilenberg-
MacLane spaces or the infinite sphere S°°.
def S : U

:= inductive { base

| loop (n: N) : base = base

}

Challenges include type checking, computation, and expressiveness.
Agda Cubical uses cubical primitives to handle HITs, supporting infinite
constructors via HITs indexed by natural numbers, as colimits.

7.2 Motivation: Higher Inductive Types

HITs in HoTT enable direct encoding of topological spaces, such as CW-complexes.
In homotopy theory, spaces are constructed by attaching cells via attaching
maps. HoTT views types as spaces, elements as points, and equalities as paths,
making HITs a natural choice. Standard inductive types cannot capture higher
homotopies, but HITs allow constructors for points and paths. For example, the
circle S* (Definition 2) has a base point and a loop, encoding its fundamental
group Z. HITs avoid the use of multiple quotient spaces, preserving the synthetic
nature of HoTT. In cubical type theory, paths are intervals (e.g., < i >) with
computational content, unlike propositional equalities, enabling efficient type
checking in tools such as Agda Cubical.

7.3 Metatheory: Cohesive Topoi
7.3.1 Geometric Proofs
RASH&
For differential geometry, type theory incorporates primitive axioms of categor-
ical meta-theoretical models of three Schreiber-Shulman functors: infinitesimal
neighborhood (&), reduced modality (), and infinitesimal discrete neighbor-
hood (&).
7.3.2 Flat Proofs
7.3.3 Sharp Proofs
7.3.4 Bose Proofs
7.3.5 Fermi Proofs
7.3.6 Linear Proofs
@Az —o

For engineering applications (e.g., Milner’s m-calculus, quantum computing)
and linear type theory, type theory embeds linear proofs based on the adjunction
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of the tensor and linear function spaces: (A ® B) — A ~ A — (B — (),
represented in a symmetric monoidal category D for a functor [A, B] as: D(A®
B,C)~D(A,[B,C)).

8 Higher Inductive Types

CW-complexes are central to HoTT and appear in cubical type checkers as HITs.
Unlike inductive types (recursive trees), HITs encode CW-complexes, capturing
points (0-cells) and higher paths (n-cells). The definition of an HIT specifies
a CW-complex through cubical composition, an initial algebra in the cubical
model.
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8.1 Suspension

The suspension 2 A of a type A is a higher inductive type that constructs a new
type by adding two points, called poles, and paths connecting each point of A
to these poles. It is a fundamental construction in homotopy theory, often used
to shift homotopy groups, e.g., obtaining S”*! from S™.

Definition 90. (Formation). For any type A : U, there exists a suspension type
YA U.

Definition 91. (Constructors). For a type A : U, the suspension YA : U is
generated by the following higher inductive compositional structure:
north
Y := ¢ south
merid : (a : A) — north = south
def ¥ (A: U) : U
:= inductive north

{
| south

| merid (a: A) : north = south
}

Theorem 46. (Elimination). For a family of types B : ¥A — U, points n :
B(north), s : B(south), and a family of dependent paths

m : II(a : A), PathOver(B, merid(a),n, s),
there exists a dependent map Indsa : (z: £A) — B(z), such that:

Inds 4 (north) =n
Inds 4 (south) = s
Indy 4 (merid(a,)) = m(a, 1)

def PathOver (B: ¥ A —> U) (a: A) (n: B north) (s: B south) : U
:= PathP (A i , B (merid a @ i)) n s

def IndsA (A: U) (B: ¥ A—>U) (n: B north) (s: B south)
(m: (a: A) — PathOver B (merid a) n s) : (x: ¥ A) —> B x
:= split { north —> n | south —> s | merid a @i —>ma @ i }

Theorem 47. (Computation).
Indsy A(north) = nInds A(south) = sIndy, A(merid(a, 1)) = m(a, )

)

def -3 (A: U) (B: XA — U) (n: B north) (s: B south)
(m: (a: A) — PathOver B (merid a) n s) (x: X A)
: Path (B x) (I ABn s m x)
split { north —> n | south —> s | merid a @ i —>ma @ i }

Theorem 48. (Uniqueness). Any two maps hi,hg : (x : ¥A) — B(z) are ho-
motopic if they agree on north, south, and merid, i.e., if hj(north) = hs(north),
hi(south) = ha(south), and hq(merid a) = ho(merid a) for all a : A.
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8.2 Pushout

The pushout (amalgamation) is a higher inductive type that constructs a type
by gluing two types A and B along a common type C' via maps f: C — A and
g : C' — B. It is a fundamental construction in homotopy theory, used to model
cell attachment and cofibrant objects, generalizing the topological notion of a
pushout.

Definition 92. (Formation). For types A, B,C : U and maps f : C — A,
g : C — B, there exists a pushout U(A, B,C, f,g) : U

Definition 93. (Constructors). The pushout is generated by the following high-
er inductive compositional structure:

01: A—U(A,B,C, f,9)
U:=<poy: B—=UAB,C, f,9)
pos : (c: C) — po1(f(c)) = poz(g(c))

def U (ABC: U) (f: C—>A) (g: C—>B) : U
:= inductive { poi (a: A)
| poz (b: B)
| pos (c: C) : poi(f(c)) = poa(g(c))

Theorem 49. (Elimination). For a type D : U, maps u: A — D, v: B — D,
and a family of paths p : (¢ : C) — u(f(c)) = v(g(c)), there exists a map
Ind, : U(A, B,C, f,g) — D, such that:

Ind,(poz(d))

def PathOver (A B C : U) (
(b:uUABCTf g—U)
(¢ : C) (u: D (po1 (f
:= PathP (A i, D (po3 c i

def Indy : (ABC : U) (f : C—> A) (g : C— B)

(bD:UABCTf g — U

(uw: (a: A) = D (por a))

(v.: (b : B) - D (po2 b))

(p (¢ : C) — PathOver D ¢ (u (f ¢)) (v (g ¢)))
(x t UABCTf g) - Dx

::spllt{polaﬁua|pozb%vb|p03c@1~>pc@1}



Theorem 51. (Uniqueness). Any two maps u,v : U(A,B,C, f,g) — D are
homotopic if they agree on poy, po,, and pos, i.e., if u(po;(a)) = v(po(a)) for
all a : A, u(poy(b)) = v(pog(d)) for all b : B, and u(po3(c)) = v(pos(c)) for all
c:C.

Example 6. (Cell Attachment) The pushout models the attachment of an n-
cell to a space X. Given f : S" ! — X and inclusion g : S"~! — D", the
pushout L(X, D™, 8"~ f g) is the space X Uy D", attaching an n-disk to X
along f.

st L x

s |

D" — X Uy D"

8.3 Spheres

Spheres are higher inductive types with higher-dimensional paths, representing
fundamental topological spaces.

Definition 94. (Pointed n-Spheres) The n-sphere S™ is defined recursively as
a type in the universe U using general recursion over dimensions:

point : S™,
S™ := < surface : < iy,...ip, > [ (41 = 0) — point, (i1 = 1) — point,
(in, = 0) — point, (i, = 1) — point |
Definition 95. (n-Spheres via Suspension) The n-sphere S™ is defined recur-

sively as a type in the universe U using general recursion over natural numbers
N. For each n € N, the type S™ : U is defined as:

o [50=2
T gntl — Z(sn).

def sphere : N — U := N-iter U 2 ¥

This iterative definition applies the suspension functor ¥ to the base type 2
(0-sphere) n times to obtain S™.

Example 7. (Sphere as CW-Complex) The n-sphere S™ can be constructed as
a CW-complex with one 0O-cell and one n-cell:

Xo = {base}, one point
X = Xg for 0 < k < n, no additional cells
X, : Attachment of an n-cell to X,,_; = {base} along f: S"~! — {base}

The constructor cell attaches the boundary of the n-cell to the base point,
yielding the type S™.
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8.4 Hub and Spokes

The hub and spokes construction ® defines an n-truncation, ensuring that the
type has no non-trivial homotopy groups above dimension n. It models the type
as a CW-complex with a hub (central point) and spokes (paths to points).

Definition 96. (Formation). For types S, A : U, there exists a hub and spokes
type ® (S, A) : U.

Definition 97. (Constructors). The hub and spokes type is freely generated by
the following higher inductive compositional structure:

base: A — @ (S, A)
®:=<chub: (S =0 (S,4)) =& (S,4)
spoke: (f: S — ® (S,A4)) = (s: 5) = hub(f) = f(s)

def ® (S A: U) : U

:= inductive { base (x: A)

| hub (f: S —> ©® S A)

| spoke (f: S—> ® S A) (s:S) : hub f = f s
}

Theorem 52. (Elimination). For a family of types P : HubSpokes S A — U,
maps pbase : (r : A) — P(basex), phub : (f : S — HubSpokesS A) —
P(hub f), and a family of paths pspoke : (f : S — HubSpokesS A) — (s :
S) — PathP (< i > P(spoke fs@34)) (phub f) (P(fs)), there exists a map
hubSpokesInd : (z : HubSpokes S A) — P(z), such that:

Indg (base z) = pbase z
Indg (hub f) = phub f
Indg (spoke f s @) = pspoke f s @4
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8.5 Truncation
Set Truncation

Definition 98. (Formation). Set truncation (0-truncation), denoted ||A||o, en-
sures that the type is a set, with homotopy groups vanishing above dimension
0.

Definition 99. (Constructors). For A : U, ||A|lo : U is defined by the following
higher inductive compositional structure:

1 llo = inc: A — ||A]lo
—o- squash : (a,b: ||Allo) = (p,g:a=b) > p=gq

def || _Jlo (A: U) : U
:= inductive { inc (a: A)
| squash (a b: ||Allo) (p q: Path (||Allo) a b
<i j> | (i 0) >p@j, (i 1) —> q
(j =0) —> a, (j=1) —>b

)
@j7
]

}

Theorem 53. (Elimination ||A|o) For a set B : U (i.e., isSet(B)), and a map
f:+ A — B, there exists setTruncRec : || Ao — B, such that Ind) 4, (inc(a)) =

f(a).

Groupoid Truncation

Definition 100. (Formation). Groupoid truncation (1-truncation), denoted
IIA]l1, ensures that the type is a 1-groupoid, with homotopy groups vanishing
above dimension 1.

Definition 101. (Constructors). For A : U, ||Al|1 : U is defined by the following
higher inductive compositional structure:

Il = inc: A— ||Allx
- squash : (a,b: ||A|1) = (p,g:a=b) = (r,s:p=q) > r=s

def || |1 (A: U) : U
:= inductive { inc (a: A)
| squash (a b: A1) (p a: Path (JAl1) a b)
(r s: Path (Path (JJA]l1) a b) p q) <i j k>

[(i=0) >r@j@k, (i=1)->s@j @k,
(j =0) —>pak, (j =1) > qQKk,
(k= 0) > a, (k=1) > b |

}

Theorem 54. (Elimination | A||;) For a 1-groupoid B : U (i.e., isGroupoid(B)),
and amap f : A — B, there exists Ind| 4, : [|Al|1 — B, such that Ind 4, (inc(a)) =
f(a).
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8.6 Quotients
Set Quotient Spaces

Quotient spaces are a powerful computational tool in type theory, embedded in
the core of Lean.

Definition 102. (Formation). Set quotient spaces construct a type A, quo-
tiented by a relation R: A — A — U, ensuring that the result is a set.

Definition 103. (Constructors). For a type A : U and a relation R: A — A —
U, the set quotient space A/R : U is freely generated by the following higher
inductive compositional structure:

quot : A — A/R
A/R := {ident : (a,b: A) — R(a,b) — quot(a) = quot(b)
trunc : (a,b: A/R) = (p,q:a=b) > p=q

def / (A: U) (Rt A—>A-—>10U) : U

:= inductive { quot (a: A)
| ident (a b: A) (r: R a b) : quot(a) = quot(b)
| trunc (a b / AR) (p q Path (/ AR) a b)
<t j> [ (i=0 —>p@j, (i=1) ->q0j,
(3 =0 > a, (j =1 —>b]

}

Theorem 55. (Elimination). For a family of types B : A/R — U with isSet(Bzx),
and maps f : (z : A) = B(quot(x)), g : (a,b: A) = (r : R(a,b)) — PathP(<
i > B(ident(a,b,7) @ i))(f(a))(f(b)), there exists Indy, g : II(x : A/R), B(x),
such that Ind 4, r(quot(a)) = f(a).

Groupoid Quotient Spaces

Definition 104. (Formation). Groupoid quotient spaces extend set quotient
spaces to produce a 1-groupoid, including constructors for higher paths. Groupoid
quotient spaces construct a type A, quotiented by a relation R: A — A — U,
ensuring that the result is a groupoid.

Definition 105. (Constructors). For a type A : U and a relation R : A —
A — U, the groupoid quotient space A//R : U includes constructors for points,
paths, and higher paths, ensuring a 1-groupoid structure.
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8.7 Wedge

The wedge of two pointed types A and B, denoted AV B, is a higher inductive
type representing the union of A and B with identified base points. Topologi-
cally, it corresponds to A x {yo} U{zo} x B, where xg and yo are the base points
of A and B, respectively.

Definition 106. (Formation). For pointed types A, B : pointed, the wedge
AVB:U.

Definition 107. (Constructors). The wedge is generated by the following higher
inductive compositional structure:

winl: A.1 - AV B
V=< winr: B.1— AV B
wglue : winl(A.2) = winr(B.2)

def Vv (A : pointed) (B : pointed) : U
:= inductive { winl (a : A.1)
| winr (b : B.1)
| wglue : winl(A.2) = winr(B.2)

}

Theorem 56. (Elimination). For a type P : AV BU, maps f : A1l — C,
g: B.1 = C, and a path p : PathOverlue(P, f(A.2), g(B.2)), there exists a map
Indy : AV B — C, such that:

Ind(winl(a)) = f(a)
Ind(winr(b)) = g(b)
Ind(wglue(z)) = p(x)

def PathOverGlue : (P : A v B —U)
(p : P (inl (A.2))) (q : P (inr (B.2))) : U
:= PathP (A i - P (wglue 1)) p ¢q

def Indy (A B : pointed) (C : U) (f : A.1 —>C) (g : B.1 —> C)
(p : Path C (f A.2) (g B.2))
: AvB-—>C
:= split { winl a —> f a | winr b —> g b | wglue @ x —> p @ x }

Theorem 57. (Computation). For z : Wedge AB,

Indy (winl a) = f(a)
Ind, (winr b) = ¢(b)
Indy (wglue Qz) = pQx
Theorem 58. (Uniqueness). Any two maps h1, he : Wedge AB — C' are homo-

topic if they agree on winl, winr, and wglue, i.e., if hy(winl a) = ho(winl a) for
all @ : A.1, hy(winr b) = he(winr b) for all b: B.1, and hq(wglue) = ha(wglue).
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8.8 Smash Product

The smash product of two pointed types A and B, denoted A A B, is a higher
inductive type that quotients the product A x B by the pushout A Ll B. It
represents the space A x B/(A x {yo} U {zo} x B), collapsing the wedge to a
single point.

Definition 108. (Formation). For pointed types A, B : pointed, the smash
product AANB : U.

Definition 109. (Constructors). The smash product is generated by the fol-
lowing higher inductive compositional structure:

basel : AN B
baser : AN B

ANB:=<proj(z: Al)(y:B1l): AAB
gluel(a : A.2) : proj(a, B.2) = basel
gluer(b : B.2) : proj(A.2,b) = baser

def A (A : pointed) (B : pointed) : U
:= inductive { basel
| baser

| proj (a : A.1) (b : B.1)

| gluel (a : A.2) : proj(a,B.2) = basel
| gluer (a : B.2) : proj(A.2,b) = baser
}

Theorem 59. (Elimination). For a family of types P : Smash A B — U, points
pbasel : P(basel), pbaser : P(baser), maps pproj : (z : A.1) = (y : B.1) —
P (projxy), and a family of paths pgluel : (a : A.1) — pproj(a, B.2) = pbasel,
pgluer : (b : B.1) — pproj(A.2,b) = pbaser, there exists a map Inds : (z :
AN B) — P(z), such that:

Ind, (basel) = pbasel

Ind, (baser) = pbaser

Inda (projzy) = pprojzy
Indx (gluela @4) = pgluela @1
Inda (gluer b@i) = pgluerb @+

def Indpn (A B : pointed) (P : A A B— U)
(pbasel : P basel) (pbaser : P baser)
(pproj : (x : A1) — (y : B.1) = P (proj x y))
(pgluel : (a : A.1) —> PathP (<i> P (gluel a @ i)) (pproj a B.2) pbasel)
(pgluer : (b : B.1) — PathP (<i> P (gluer b @ i)) (pproj A.2 b) pbaser)
: (z : AANB) —>P z
:= split { basel —> pbasel | baser —> pbaser | proj x y —> pproj x y
| gluel a @ i —> pgluel a @ i | gluer b @ i —> pgluer b @ i }
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Theorem 60. (Computation). For a family of types P : A A B — U, points
pbasel : P(basel), pbaser : P(baser), map pproj : (z : A1) —» (y : B.1) —
P(projxy), and families of paths pgluel : (a : A.1) — PathP (< ¢ > P(gluela @ 1)) (pproja B.2) pbasel,
pgluer : (b : B.1) — PathP (< i > P(gluerb@i)) (pproj A.2b) pbaser, the map
Inds : (2 : AA B) — P(z) satisfies all equations for all variants of the predicate
P:

Inda (basel) = pbasel

Ind, (baser) = pbaser

Inda (projzy) = pprojzy

Inda (gluela @) = pgluela @4

Inda (gluer b@i) = pgluerb @+

Theorem 61. (Uniqueness). For a family of types P : AA B — U, and
maps hi,he : (z : AN B) — P(z), if there exist paths epasel : h1(basel) =
ho(basel), epaser : hi(baser) = ho(baser), eproj @ (z : A1) = (y : B.1) —
hi(projxy) = ha(projzy), egiuel : (a : A.1) — PathP (< i > hi(gluela @i) =
ha(gluela @ 1)) (eproj @ B.2) ebasels €gluer : (b : B.1) — PathP (< i > hi(gluerb@i) =
ho(gluer b@ 7)) (epmJA 2b) epaser; then hy = ho, i.e., there exists a path (z

AN B) = hi(2) = ha(2).
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8.9 Join

The join of two types A and B, denoted A V B, is a higher inductive type
that constructs a type by joining each point of A to each point of B via a
path. Topologically, it corresponds to the join of spaces, forming a space that
interpolates between A and B.

Definition 110. (Formation). For types A, B : U, the join Ax B : U.

Definition 111. (Constructors). The join is generated by the following higher
inductive compositional structure:

joinl: A— AV B
AV B:=<joinr: B—+ AV B
join(a : A)(b: B) : joinl(a) = joinr(b)

def v (A : U) (B:U) :U
= 1nduct1ve { joinl (a: A)
| joinr (b: B)
J join (a: A) (b: B) : joinl(a) = joinr(b)

Theorem 62. (Elimination). For a type C : U, maps f : A - C, g: B — C,
and a family of paths h: (a: A) — (b: B) — f(a) = g(b), there exists a map
Indy : AV B — C, such that:

Indy, (joinl(a)) = f(a)
Indy, (joinr (b)) = g(b)
Indy (join(a, b,%)) = h(a,b, 1)

def Indy (ABC : U) (f : A—>C) (g : — C)
(h : (a:A) = (b : B) = Path C ( a) (g b))
: AvB-—>C

:= split { joinl a —> f a
| joinr b —> g b
| join ab@i-—>habai
}

Theorem 63. (Computation). For all z: AV B, and predicate P, the rules of
Ind, hold for all parameters of the predicate P.

Theorem 64. (Uniqueness). Any two maps hy, hy : AV B — C are homotopic
if they agree on joinl, joinr, and join.
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8.10 Colimit

Colimits construct the limit of a sequence of types, connected by maps, e.g.,
propositional truncations.

Definition 112. (Colimit) For a sequence of types A : nat — U and maps
f:(n:N)— An — A(succ(n)), the colimit type colimit(A, f) : U.

colim {ix : (n:nat) — An — colimit(A4, f)
" |ex:(n:nat) = (a: A(n)) — ix(succ(n), f(n,a)) = ix(n, a)

def colimit (A : nat —> U) (f : (n : nat) —> A n —> A (succ n)) : U
:= inductive { ix (n : nat) (x: A n)
| gx (n : nat) (a: A n)
<i> [ (i=0) — ix (succ n) (f n a),
(i=1) —> ix n a |
}

Theorem 65. (Elimination colimit) For a type P : colimit Af — U, with
p: (n :nat) = (x : An) = P(ix(n,z)) and ¢ : (n : nat) = (a : An) —
PathP((i) P(gx(n, a)@7))(p(succ n)(fna))(pna), there exists i : I;.colimit 45P(z),
such that i(ix(n, x)) = pnz.
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8.11 Coequalizers
Coequalizer

The coequalizer of two maps f,g : A — B is a higher inductive type (HIT)
that constructs a type consisting of elements in B, where f and g agree, along
with paths ensuring this equality. It is a fundamental construction in homotopy
theory, capturing the subspace of B where f(a) = g(a) for a : A.

Definition 113. (Formation). For types A, B : U and maps f,g: A — B, the
coequalizer coeq ABfg: U.

Definition 114. (Constructors). The coequalizer is generated by the following
higher inductive compositional structure:

Coeq — {inC : B — Coeq(A, B, f,9)
T VelueC : (a: A) = inC(f(a)) = inC(g(a))

def Coeq (A B: U) (f g: A—B) : U
:= inductive { inC (b: B)
| glueC (a: A) : inC (f a) = inC (g a)

Theorem 66. (Elimination). For a type C : U, map h : B — C, and a family
of paths y : (x : A) — Pathe(h(fx),h(gz)), there exists a map coequRec :
coeq ABfg — C, such that:

coequRec(inC(z)) = h(zx)
coequRec(glueC(z, 1)) = y(z,17)

def coequRec (ABC : U) (f g : A—>B) (h: B—> C)
(y: (x : A) = Path C (h (f x)) (h (g x)))
: (z : coeq ABf g) > C
:= split { inC x —> h x | glueC x@ i >y x @i }

Theorem 67. (Computation). For z : coeq ABfg,

coequRec(inC z) = h(x)
coequRec(glueC z Qi) = y(z) Q4

Theorem 68. (Uniqueness). Any two maps hi, hs : coeq ABfg — C are ho-

motopic if they agree on inC and glueC, i.e., if hy(inC z) = ho(inC z) for all

x : B and hq(glueC a) = ha(glueC a) for all a : A.

Example 8. (Coequalizer as Subspace) The coequalizer coeq AB fg represents
the subspace of B, where f(a) = g(a). For example, if A= B =R and f(z) =
22, g(z) = x, the coequalizer captures the points where 2% = z, i.e., {0,1}.
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Path Coequalizer

The path coequalizer is a higher inductive type that generalizes the coequal-
izer to handle pairs of paths in B. Given a map p : A — (b1,be : B) X
(Pathp(b1,b2)) x (Pathg(b1,bs)), it constructs a type where elements of A gen-
erate pairs of paths between points in B, with paths connecting the endpoints
of these paths.

Definition 115. (Formation). For types A, B : U and a map p : A — (b1, by :
B) x (by = bg) x (by = ba), there exists a path coequalizer Coeq_(A, B,p) : U.

Definition 116. (Constructors). The path coequalizer is generated by the fol-
lowing higher inductive compositional structure:

Coear.. - 4 P # B = Cocq(4, B,p)
=7\ glueP : (a: A) - inP(p(a).2.2.1@0) = inP(p(a).2.2.201)

data Coeq—= (A B: U) (p : A—> X (bl b2: B), bl = b2 x bl = b2)
— inP (b: B)

| glueP (a:A) <i> [(i=0) — inP ((p a). 1

(i=1) — inP ((p a).2.2.2

Theorem 69. (Elimination). For a type C : U, map h: B — C, and a family
of paths y : (a : A) — h(p(a).2.2.1@0) = h(p(a).2.2.2Q@1), there exists a map
Ind-Coequ_ : Coeq_(A, B,p) — C, such that:

{coeunRec(inP(b))

= h(b)
coequPRec(glueP(a, 1))

= y(a7 Z)

def Ind—Coequ= (A B C : U)
(p : A—> X (bl b2: B) (x: Path B bl b2), Path B bl b2)
(h: B—>C) (y: (a : A) —> Path C (h (((p a).2.2.1) @ 0)) (h (((p a).2.2.2) @ 1)))
: (z : coeqP ABp) > C
:= split { inP b —> hb | glueP a @i >y a@i }

Theorem 70. (Computation). For z : coeqP ABp,

coequPRec(inP b) = h(b)
coequPRec(glueP a @i) = y(a) Q1

Theorem 71. (Uniqueness). Any two maps hy, ho : coeqP ABp — C are ho-

motopic if they agree on inP and glueP, i.e., if hy(inP b) = ho(inP b) for all
b: B and hq(glueP a) = ha(glueP a) for all a : A.
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8.12 K(G,n)

Eilenberg-MacLane spaces K(G,n) have a single non-trivial homotopy group
Tn(K(G,n)) = G. They are defined using truncations and suspensions.

Definition 117. (K(G,n)) For an abelian group G : abgroup, the type KGn(G) :
nat — U.

K(G.n) n = 0 ~» discreteTopology(G)
RORES
n>1~ |2 YK (G1,G.2.1))|,

def KGn (G: abgroup) : N —> U
:= split { zero —> discreteTopology G
| succ n —> nTrunc (¥ (K1’ (G.1,G.2.1)) n) (succ n)

}
Theorem 72. (Elimination KGn) For n > 1, atype B : U with isNGroupoid(B, succ n),

and a map f : suspension(K1'G) — B, there exists reckgn : KGnG(succ n) —
B, defined via nTruncRec.

82



8.13 Localization

Localization constructs an F-local type from a type X, with respect to a family
of maps Fu : S(a) = T'(a).

Definition 118. (Localization Modality) For a family of maps F4 : S(a) —
T(a), the F-localization L#5T(X) : U.

center : X — Lp, (X)
ext(a: A) = (S(a) » Lp, (X)) : T(a) = Lp, (X)
isExt(a: A)(f: S(a) = Lp, (X)) = (s:S5(a)) : ext(a, f, F(a,s)) = f(s)
extEq(a: A)(g,h:T(a) = Lp, (X))
Lp(X) = (p:(s:5(a)) = g(F(a,s)) = h(F(a,s)))
(t:T(a)):g(t) = h(t)
isExtEq: (a: A)(g,h: T(a) = Lr, (X))
(p:(s:5(a)) = g(F(a,s)) = h(F(a,s)))
(s:S5(a)) : extEq(a, g, h,p, F(a,s) = p(s)

data Localize (A X: U) (ST: A—>1U) (F : (x:A) —> S x —> T x)
= center (x: X)
| ext (a: A) (f: S a —> Localize AX S TF) (t: T a)
| isExt (a: A) (f: S a —> Localize AX S TTF) (s: S a) <i>
[ (i=0) — ext a f (F as) , (i=1]) —> f s |
| extEq (a: A) (g h: T a —> Localize AX S T F)
(p: (s : S a) — Path (Localize AXSTF) (g (Fas)) (h (Fas)))
(t : Ta) <i> [ (i=0) > g t , (i=1) —> h t |
| isExtEq (a: A) (g h : T a —> Localize AX S TF)
(p: (s : S a) — Path (T a —> Localize AXSTF) (g (Fas)) (h (Fas)))
(s : S a) <i> | (i=0) —> extEq a g hp (Fas) , (i=l) —> p s |

Theorem 73. (Localization Induction) For any P : Ilx.yLp, (X) — U with
{n,r, s}, satisfying coherence conditions, there exists ¢ : II,. Ly ( x)P(x), such
that 7 - centerx = n.

Conclusion

HITs directly encode CW-complexes in HoT'T, bridging topology and type the-
ory. They enable the analysis and manipulation of homotopical types.
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Issue V: Modalities and Identity Systems

Namdak Tonpa
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AmnoTaniis

This article explores the interplay between modalities, identity sys-
tems, and homologies in the framework of Homotopy Type Theory (HoTT).
We formalize modalities and identity systems as structures within (co,1)-
categories and investigate the homological properties arising when their
functor compositions are treated as groups. Special attention is given to
topological structures, such as the Mobius strip, that emerge from non-
trivial compositions, and their role in generating non-trivial fundamental
groups. A classification of generators is provided, highlighting their cate-
gorical and homotopical properties.

9 Modalities and Identity Systems

Homotopy Type Theory (HoTT) provides a powerful framework for studying
categorical structures through the lens of types, paths, and higher homotopies.
In this context, modalities and identity systems serve as fundamental constructs
that encode localization and identification properties, respectively. When com-
positions of their associated functors are interpreted as groups, they give rise to
homological structures, such as fundamental groups, that can model complex
topological spaces like the Mobius strip. This article formalizes these concepts
and explores their implications in (co,1)-toposes, with a focus on the emergence
of CW-complexes and homologies.
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9.1 Modality

Definition 119 (Modality). A modality in HoTT is a structure comprising:

def Modality :=
Y (modality: U — U)

(isModal : U — U)
(eta: IT (A : U), A— modality A)
(elim: II (A : U) (B : modality A — U)

(B-Modal : II (x : modality A), isModal (B x))
(f: I (x : A), (B (eta A x))),
(IT (x : modality A), B x))
(elim—B : II (A : U) (B : modality A — U)
(B-Modal : II (x : modality A), isModal (B x))
(f : II (x : A), (B (eta A x))) (a : A),
PathP (< >B (eta A a)) (elim A B B-Modal f (eta A a)) (f a))
(modalityIsModal : II (A : U), isModal (modality A))
(propIsModal : II (A : U), II (a b : isModal A),
PathP (< >isModal A) a b)
(=Modal : II (A : U) (x y : modality A),
isModal (PathP (< >modality A) x y)), 1

where U is a universe of types, n is a natural inclusion, and elim provides a
universal property for modal types (see [1] for details).

Modalities act as localization functors, projecting types onto subcategories
of modal types. For instance, the discrete modality (b) trivializes higher homo-
topies, while the codiscrete modality () makes types contractible.
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9.2 Identity Systems

Definition 120 (Identity System). For a type A : U, an identity system is
defined as:

def IdentitySystem (A : U) : U:=
Y (=form : A—-A— 1)
(=ctor : II (a : A), =form a a)
(=—elim : II :A) (C: II (xy @ A)
: =form x y), U)
: Ca a (=-ctor a)) (y : A)
: =form a y), Cay p)
:A) (C: I (x y @ A)
: =form x y), U)
: Caa (=ctor a)),
Path (C a a (=-ctor a)) d
(=elim a Cd a (=ctor a))), 1

(=—comp : II

(
(
(
(
(
(
(

AT T AT D

where = -form generalizes the identity type, and = -ctor ensures reflexivity.

Identity systems generalize paths in HoTT, allowing the construction of
types with non-trivial fundamental groups, such as the Mobius strip, where
identifications generate Z.
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9.3 Classification of Generators

The following table classifies key generators, including modalities and identity
systems, based on their categorical and homotopical properties.

Tabur. 5: Classification of Generators in Homotopy Type Theory

Generator Notation Type Adjunction
Discrete b Modality b4
Codiscrete i Comodality b4
Bosonic O Modality O—40*
Fermionic/Infinitesimal R Modality RN
Rheonomic Rh Modality —
Reduced R Modality —
Polynomial w Inductive —
Polynomial M Coinductive —
Higher Inductive HIT Inductive HIT 4 Path
Higher Coinductive CoHIT Coinductive  Path 4 CoHIT
Path Spaces Path Identification HITH4S
Identity =~ = Identification —
Isomporphism = Identification —
Equality =, Identification —
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9.4 Homologies from Functor Compositions

When functor compositions of modalities and identity systems are treated as
groups, they generate homological structures, such as fundamental groups or
homology groups. For example, consider the composition bofob. In a topological
context, this may correspond to a localization that preserves certain homotopical
features, potentially yielding a CW-complex like the Mobius strip.

Theorem 74. Let C be an (00,1)-topos, and let F' = bofiob be a functor compo-
sition treated as a group action. The resulting structure induces a fundamental
group isomorphic to Z for types modeling the M&bius strip.

Sketch. The Mobius strip can be constructed as a higher inductive type (HIT)
with an identity system generating Z. The functor b discretizes the type, f
contracts it, and the second b reintroduces discrete structure, preserving the non-
trivial loop in the identification system. The resulting type has a fundamental
group m = Z. O

9.5 Topological Interpretation

The Mébius strip, as a CW-complex, arises naturally in this framework. Its non-
trivial fundamental group is generated by an identity system, while modalities
like & or () introduce twisting or orientation properties. This connects to topo-
logical quantum field theories (TQFTSs), where surfaces like the Mdbius strip
encode non-trivial symmetries.

9.6 Conclusion

Modalities and identity systems in HoTT provide a rich framework for model-
ing categorical and topological phenomena. By treating functor compositions as
groups, we uncover homological structures that bridge type theory and topol-
ogy. Future work may explore applications in TQFT and synthetic differential
geometry.
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