Volume I: Foundations Introduction to Homotopy Type Theory Issue I: Type Theory (Martin-Löf) Issue II: Inductive Types (Coquand) Issue III: Homotopy Type Theory (Awodey) Issue IV: Higher Inductive Types (Lumsdaine) Issue V: Modalities (Shulman) Namdak Tonpa 2021 · Groupoid Infinity ## Зміст | 1 | Inte | rpretations | 6 | |---|------|--|---| | | 1.1 | Logical Interpretation | 7 | | | 1.2 | Categorical Interpretation | 7 | | | 1.3 | | 8 | | | 1.4 | | 8 | | 2 | Inte | rnalized Type Theory | 8 | | | 2.1 | Dependent Product (Π) | 8 | | | 2.2 | Dependent Sum (Σ) | 1 | | | 2.3 | Path (Ξ) | 3 | | | 2.4 | Contexts | 6 | | | 2.5 | Universes | 6 | | | 2.6 | MLTT-75 | 8 | | 3 | Indi | active Encodings 2 | 5 | | | 3.1 | Church Encoding | 5 | | | 3.2 | Scott Encoding | 5 | | | 3.3 | Parigot Encoding | 5 | | | 3.4 | CPS Encoding | 5 | | | 3.5 | Interaction Networks Encoding | 5 | | | 3.6 | Impredicative Encoding | 5 | | | 3.7 | Lambek Encoding: Homotopy Initial Algebras | 6 | | 4 | Indi | active Types 2 | 7 | | | 4.1 | W | 7 | | | 4.2 | M | 8 | | | 4.3 | Empty | 9 | | | 4.4 | Unit | | | | 4.5 | Bool | | | | 4.6 | Maybe | | | | 4.7 | Either | | | | 4.8 | Nat | | | | 4.9 | List | | | | | Vector | | | | | Stream | | | | | | 1 | | 5 | Gro | upoid Interpretation | 36 | |---|------|----------------------------------|----| | | 5.1 | Introduction: Type Theory | 36 | | | 5.2 | Motivation: Homotopy Type Theory | 37 | | | 5.3 | Metatheory: Adjunction Triples | 38 | | | | 5.3.1 Fibrational Proofs | 38 | | | | 5.3.2 Equality Proofs | 38 | | | | 5.3.3 Inductive Proofs | 38 | | 6 | Hon | notopy Type Theory | 40 | | | 6.1 | Identity Systems | 40 | | | 6.2 | Path (Ξ) | 41 | | | 6.3 | Glue | 47 | | | 6.4 | Fibration | 48 | | | 6.5 | Equivalence | 51 | | | 6.6 | Homotopy | 53 | | | 6.7 | Isomorphism | 55 | | | 6.8 | Univalence | 56 | | | 6.9 | Loop | 57 | | | 6.10 | Groupoid | 58 | | | | Homotopy Groups | 61 | | | | Hopf Fibrations | 62 | | 7 | $\mathbf{C}\mathbf{W}$ | -Complexes | 65 | |---|------------------------|--------------------------------------|----| | | 7.1 | Introduction: Countable Constructors | 67 | | | 7.2 | Motivation: Higher Inductive Types | 67 | | | 7.3 | | 67 | | | | | 67 | | | | 7.3.2 Flat Proofs | 67 | | | | 7.3.3 Sharp Proofs | 67 | | | | 7.3.4 Bose Proofs | 67 | | | | | 67 | | | | | 67 | | 8 | Higl | | 68 | | | 8.1 | Suspension | 69 | | | 8.2 | Pushout | 70 | | | 8.3 | Spheres | 71 | | | 8.4 | Hub and Spokes | 72 | | | 8.5 | Truncation | 73 | | | 8.6 | Quotients | 74 | | | 8.7 | Wedge | 75 | | | 8.8 | Smash Product | 76 | | | 8.9 | Join | 78 | | | 8.10 | | 79 | | | | | 80 | | | | - | 82 | | | | | 83 | | 9 | Mod | lalities and Identity Systems | 85 | | | 9.1 | Modality | 86 | | | 9.2 | · · | 87 | | | 9.3 | | 88 | | | 9.4 | Homologies from Functor Compositions | 89 | | | 9.5 | - | 89 | | | 96 | | 89 | ## Issue I: Type Theory #### Максим Соханький ¹ ¹ Національний технічний університет України Київський політехнічний інститут імені Ігоря Сікорського 5 травня 2025 р. #### Анотація **Background.** The long road from pure type systems of AUTOMATH by de Bruijn to type checkers with homotopical core was made. This article touches only the formal Martin-Löf Type Theory core type system with Π and Σ types (that correspond to \forall and \exists quantifiers for mathematical reasoning) and identity type (MLTT-75). Expressing the MLTT embedding in a host type checker for a long time was inaccessible due to the non-derivability of the J eliminator in pure functions. This was recently made possible by cubical type theory and cubical type checker. **Objective.** Select the type system as a part of conceptual model of theorem proving system that is able to derive the J eliminator and its theorems based on the latest research in cubical type systems. The goal of this article is to demonstrate the formal embedding of MLTT-75 into **Per** with constructive proofs of the complete set of inference rules including J eliminator. **Methods.** As types are formulated using 5 types of rules (formation, intro, elimination, computation, uniqueness) according to MLTT we constructed aliases for the host language primitives and used the cubical type checker to prove that it has the realization of MLTT-75. **Results.** This work leads to several results: 1) **Per** — a special embedded version of type theory with infinite number of universes and Path type suitable for HoTT purposes without uniqueness rule of equality type; 2) The actual embedding of MLTT with syntax implying universe polymorphism and cubical primitives in **Per**; 3) The different interpretations of types were given: set-theoretical, groupoid, homotopical; 4) Internalization could be seen as an ultimate test sample for type checker as intro-elimination fusion resides in beta-eta rules, so by proving them, we prove properties of the host type checker. Conclusion. We should note that this is an entrance to the internalization technique, and after formal MLTT embedding, we could go through inductive types up to embedding of CW-complexes as the indexed gluing of the higher inductive types. This means the implementation of a wide spectrum of math theories inside HoTT up to algebraic topology. Keywords: Martin-Löf Type Theory, Cubical Type Theory. #### Introduction Each language implementation needs to be checked. The one of possible test cases for type checkers is the direct embedding of type theory model into the language of type checker. As types in Martin-Löf Type Theory [3, 5] are formulated using 5 types of rules (formation, introduction, elimination, computation, uniqueness), we construct aliases for host language primitives and use type checker to prove that it is MLTT-75. This could be seen as ultimate test sample for type checker as intro-elimination fusion resides in beta-eta rules, so by proving them we prove properties of the host type checker. Also this issue opens a series of articles dedicated to formalization in cubical type theory the foundations of mathematics. This issue is dedicated to MLTT modeling and its verification. Also as many may not be familiar with Π and Σ types, this issue presents different interpretation of MLTT types. This test is fully made possible only after 2017 when new constructive HoTT [1] prover cubicaltt¹ prover was presented [17]. #### **Problem Statement** The formal initial problem was to create a full self-contained MLTT internalization in the host typechecker, where all theorems are being checked constructively. This task involves a modern techniques in type theory, namely cubical type theories. By following most advaced theories apply this results for building minimal type checker that is able to derive J and the whole MLTT theorems constructively. This leads us to the compact MLTT core yet compatible with future possible homotopy extensions. #### Per Language Syntax The BNF notation of type checker language used in code samples consists of: i) telescopes (contexts or sigma chains) and definitions; ii) pure dependent type theory syntax; iii) inductive data definitions (sum chains) and split eliminator; iv) cubical face system; v) module system. It is slightly based on cubicaltt. ``` \begin{array}{lll} \mathrm{sys} &:= \left[\begin{array}{c} \mathrm{sides} \end{array}\right] \\ \mathrm{side} &:= \left(\mathrm{id=0}\right) \!\!\to\!\! \mathrm{exp} +\!\! \left(\mathrm{id=1}\right) \!\!\to\!\! \mathrm{exp} \\ \mathrm{f1} &:= \mathrm{f1} \ / \ \mathrm{f2} \\ \mathrm{f2} &:= -\mathrm{f2} + \mathrm{id} + 0 + 1 \\ \mathrm{form} &:= \mathrm{form} \ / \ \mathrm{f1} + \mathrm{f1} + \mathrm{f2} \\ \mathrm{sides} &:= \#\mathrm{empty} + \mathrm{cos} + \mathrm{side} \\ \mathrm{cos} &:= \mathrm{side} \, , \mathrm{side} + \mathrm{side} \, , \mathrm{cos} \\ \mathrm{id} &:= \#\mathrm{list} \, \#\mathrm{nat} \\ \mathrm{ids} &:= \#\mathrm{list} \, \mathrm{id} \\ \mathrm{mod} &:= \mathrm{module} \, \mathrm{id} \, \mathrm{where} \, \mathrm{imps} \, \mathrm{dec} \\ \mathrm{imps} &:= \#\mathrm{list} \, \mathrm{imp} \\ \mathrm{imps} &:= \#\mathrm{list} \, \mathrm{imp} \\ \mathrm{ord} &:= \#\mathrm{empty} + \mathrm{cobrs} \\ \mathrm{cobrs} &:= \mid \mathrm{br} \, \mathrm{brs} \end{array} ``` ¹http://github.com/mortberg/cubicaltt ``` br := ids \rightarrow exp +ids @ ids \rightarrow exp tel := #empty + cotel dec := #empty + codec cotel := (exp:exp) tel codec := def dec sum := #empty + id tel + id tel | sum def := data id tel=sum +id tel:exp=exp + id tel : exp where def app := exp exp exp := cotel * exp + cotel \rightarrow exp + exp \rightarrow exp + (exp) + id + (exp,exp) + \cotele \rightarrow exp + split cobrs +exp .1 + exp .2 + \langle ids \rangle exp + exp @ form + app + comp exp sys ``` Here := (definition), + (disjoint sum), #empty, #nat, #list are parts of BNF language and $|, :, *, \langle, \rangle, (,), =, \setminus, /, -, \to, 0, 1, @, [,], module, import, data, split, where, comp, .1, .2, and , are terminals of type checker language. This language includes inductive types, higher inductive types and gluening operations needed for both, the constructive homotopy type theory and univalence. All these concepts as a part of the languages will be described in the upcoming Issues II — V.$ ## 1 Interpretations Martin-Löf Type Theory MLTT-80 contains Π , Σ , Id, W, 0, 1, 2 types. Any new type in MLTT presented with set of 5 rules: i) formation rules, the signature of type; ii) the set of constructors which produce the elements of formation rule signature; iii) the dependent eliminator or induction principle for this type; iv) the beta-equality or computational rule; v) the eta-equality or uniquness principle. Π , Σ , and Path types will be given shortly. This interpretation or rather way of modeling is MLTT specific. The most interesting are Id types. Id types were added in MLTT-75 [5] while original MLTT-72 with only Π and Σ was
introduced in [3]. Predicative Universe Hierarchy was added in [4]. While original MLTT-75 contains Id types that preserve uniquness of identity proofs (UIP) or eta-rule of Id type, HoTT refutes UIP (eta rule desn't hold) and introduces univalent heterogeneous Path equality [7]. Path types are essential to prove computation and uniquess rules for all types (needed for building signature and terms), so we will be able to prove all the MLTT rules as a whole. In contexts you can bind to variables (through de Brujin indexes or string names): i) indexed universes; ii) built-in types; iii) user constructed types, and ask questions about type derivability, type checking and code extraction. This system defines the core type checker within its language. By using this languages it is possible to encode different interpretations of type theory itself and its syntax by construction. Usually the issues will refer to following interpretations: i) type-theoretical; ii) categorical; iii) set-theoretical; iv) homotopical; v) fibrational or geometrical. Табл. 1: * **Table**. Interpretations correspond to mathematical theories | Table. Interpretations correspond to mathematical theories | | | | | | | |--|--------------------------|----------------------------|-------------------|--|--|--| | Type Theory | Logic | Category Theory | Homotopy Theory | | | | | A type | class | object | space | | | | | isProp A | proposition | (-1)-truncated object | space | | | | | a:A program | proof | generalized element | point | | | | | B(x) | predicate | indexed object | fibration | | | | | b(x):B(x) | conditional proof | indexed elements | section | | | | | Ø | \perp false | initial object | empty space | | | | | 1 | \top true | terminal object | singleton | | | | | A + B | $A \vee B$ disjunction | $\operatorname{coproduct}$ | coproduct space | | | | | $A \times B$ | $A \wedge B$ conjunction | product | product space | | | | | $A \to B$ | $A \Rightarrow B$ | internal hom | function space | | | | | $\sum x : A, B(x)$ | $\exists_{x:A}B(x)$ | dependent sum | total space | | | | | $\prod x: A, B(x)$ | $\forall_{x:A}B(x)$ | dependent product | space of sections | | | | | \mathbf{Path}_A | equivalence $=_A$ | path space object | path space A^I | | | | | quotient | equivalence class | quotient | quotient | | | | | W-type | induction | colimit | complex | | | | | type of types | universe | object classifier | universe | | | | | quantum circuit | proof net | string diagram | | | | | ### 1.1 Logical Interpretation According to type theoretical interpretation of MLTT for any type should be provided 5 formal inference rules: i) formation; ii) introduction; iii) dependent elimination principle; iv) beta rule or computational rule; v) eta rule or uniqueness rule. The last one could be exceptional for Path types. The formal representation of all rules of MLTT are given according to type-theoretical interpretation as a final result in this Issue I. It was proven that classical Logic could be embedded into intuitionistic propositional logic (IPL) which is directly embedded into MLTT. Logical and type-theoretical interpretations could be distincted. Also settheoretical interpretation is not presented in the Table. #### 1.2 Categorical Interpretation Categorical interpretation [11] is a modeling through categories and functors. First category is defined as objects, morphisms and their properties, then we define functors, etc. In particular, as an example, according to categorical interpretation Π and Σ types of MLTT are presented as adjoint functors, and forms itself a locally closed cartesian category, which will be given an intermediate result in future issues. In some sense we include here topos-theoretical interpre- tations, with presheaf model of type theory as example (in this case fibrations are constructes as functors, categorically). #### 1.3 Homotopical Interpretation In classical MLTT uniquness rule of Id type do holds strictly. In Homotopical interpretation of MLTT we need to allow a path space as Path type where uniqueness rule doesn't hold. Groupoid interpretation of Path equality that doesn't hold UIP generally was given in 1996 by Martin Hofmann and Thomas Streicher [7]. When objects are defined as fibrations, or dependent products, or indexedobjects this leds to fibrational semantics and geometric sheaf interpretation. Several definition of fiber bundles and trivial fiber bindle as direct isomorphisms of Π types is given here as theorem. As fibrations study in homotopical interpretation, geometric interpretation could be treated as homotopical. #### 1.4 Set Interpretation Set-theoretical interpretations could replace first-order logic, but could not allow higher equalities, as long as inductive types to be embedded directly. Set is modelled in type theory according to homotopical interpretation as n-type. MLTT-80 could be reduced to Π , Σ , Path types (MLTT-75) omitting polynomial functors W modeled by F-algebras and their terminators: 0, 1, 2 types. In this issue Π , Σ , Path are given as a core of MLTT-75. The inductive types will be disscussed in the upcoming **Issue II**: **Inductive Types**. ## 2 Internalized Type Theory ### 2.1 Dependent Product (Π) Π is a dependent product type, the generalization of functions. As a function it can serve the wide range of mathematical constructions as its domain and codomain, which are in general: objects, types, or spaces; and could have as its instance: sets, functions, polynomial functors, infinitesimals, ∞ -groupoids, topological ∞ -groupoid, CW-complexes, categories, languages, etc. At this light there could be many interpretation of Π types from different areas of mathematics. We give here three: i) logical interpretation of Π as \forall quantifier from higher order logic that forms a ground of type theory; ii) geometric interpretation of Π as fiber bundle; iii) categorical interpretation of functions as functors. #### Type-theoretical interpretation As a logical system dependent type theory could correspond to higher order logic. However here only type-theoretical model is given completely. **Definition 1.** (Π -Formation). $$(x:A) \to B(x) =_{def} \prod_{x:A} B(x): U.$$ Pi (A: U) (B: A $$\rightarrow$$ U): U = (x: A) \rightarrow B x **Definition 2.** (Π -Introduction). $$(x:A) \to b =_{def} \prod_{A:U} \prod_{B:A \to U} \prod_{a:A} \prod_{b:B(a)} \lambda x.b : \prod_{y:A} B(a).$$ **Definition 3.** (Π -Elimination). $$f \ a =_{def} \prod_{A:U} \prod_{B:A \rightarrow U} \prod_{a:A} \prod_{f:\prod_{x:A} B(a)} f(a) : B(a).$$ $$\begin{array}{l} {\rm apply} \ (A \ B \colon U) \ (f \colon A -\!\!\!> B) \ (a \colon A) \ \colon B = f \ a \\ {\rm app} \ (A \colon U) \ (B \colon A -\!\!\!> U) \ (a \colon A) \\ (f \colon A -\!\!\!> B \ a) \ \colon B \ a = f \ a \end{array}$$ Theorem 1. (Π -Computation). $$f(a) =_{B(a)} (\lambda(x : A) \to f(a))(a).$$ Beta (A: U) (B: $$A \rightarrow U$$) (a: A) (f: $A \rightarrow B$ a) : Path (B a) (app A B a (lam A B a (f a))) (f a) Theorem 2. (Π -Uniqueness). $$f =_{(x:A)\to B(a)} (\lambda(y:A)\to f(y)).$$ #### Categorical interpretation The adjoints Π and Σ is not the only adjoints could be presented in type system. Axiomatic cohesions could contain a set of adjoint pairs as a core type checker operations. **Definition 4.** (Dependent Product). The dependent product along morphism $g: B \to A$ in category C is the right adjoint $\Pi_g: C_{/B} \to C_{/A}$ of the base change functor **Definition 5.** (Space of Sections). Let **H** be a $(\infty, 1)$ -topos, and let $E \to B$: $\mathbf{H}_{/B}$ a bundle in **H**, object in the slice topos. Then the space of sections $\Gamma_{\Sigma}(E)$ of this bundle is the Dependent Product: $$\Gamma_{\Sigma}(E) = \Pi_{\Sigma}(E) \in \mathbf{H}.$$ **Theorem 3.** (HomSet). If codomain is set then space of sections is a set. **Theorem 4.** (Contractability). If domain and codomain is contractible then the space of sections is contractible. **Definition 6.** (Section). A section of morphism $f:A\to B$ in some category is the morphism $g:B\to A$ such that $f\circ g:B\xrightarrow{g} A\xrightarrow{f} B$ equals the identity morphism on B. #### Homotopical interpretation Geometrically, Π type is a space of sections, while the dependent codomain is a space of fibrations. Lambda functions are sections or points in these spaces, while the function result is a fibration. Π type also represents the cartesian family of sets, generalizing the cartesian product of sets. **Definition 7.** (Fiber). The fiber of the map $p: E \to B$ in a point y: B is all points x: E such that p(x) = y. **Definition 8.** (Fiber Bundle). The fiber bundle $F \to E \xrightarrow{p} B$ on a total space E with fiber layer F and base B is a structure (F, E, p, B) where $p : E \to B$ is a surjective map with following property: for any point y : B exists a neighborhood U_b for which a homeomorphism $f : p^{-1}(U_b) \to U_b \times F$ making the following diagram commute. **Definition 9.** (Cartesian Product of Family over B). Is a set F of sections of the bundle with elimination map $app : F \times B \to E$ such that $$F \times B \xrightarrow{app} E \xrightarrow{pr_1} B$$ (1) pr_1 is a product projection, so pr_1 , app are morphisms of slice category $Set_{/B}$. The universal mapping property of F: for all A and morphism $A \times B \to E$ in $Set_{/B}$ exists unique map $A \to F$ such that everything commute. So a category with all dependent products is necessarily a category with all pullbacks. **Definition 10.** (Trivial Fiber Bundle). When total space E is cartesian product $\Sigma(B,F)$ and $p=pr_1$ then such bundle is called trivial $(F,\Sigma(B,F),pr_1,B)$. **Theorem 5.** (Functions Preserve Paths). For a function $f:(x:A) \to B(x)$ there is an $ap_f: x =_A y \to f(x) =_{B(x)} f(y)$.
This is called application of f to path or congruence property (for non-dependent case — cong function). This property behaves functoriality as if paths are groupoid morphisms and types are objects. **Theorem 6.** (Trivial Fiber equals Family of Sets). Inverse image (fiber) of fiber bundle $(F, B * F, pr_1, B)$ in point y : B equals F(y). ``` FiberPi (B: U) (F: B -> U) (y: B) : Path U (fiber (Sigma B F) B (pi1 B F) y) (F y) ``` **Theorem 7.** (Homotopy Equivalence). If fiber space is set for all base, and there are two functions $f, g: (x:A) \to B(x)$ and two homotopies between them, then these homotopies are equal. ``` setPi (A: U) (B: A -> U) (h: (x: A) -> isSet (B x)) (f g: Pi A B) (p q: Path (Pi A B) f g) : Path (Path (Pi A B) f g) p q ``` Note that we will not be able to prove this theorem until **Issue III: Homotopy Type Theory** because bi-invertible iso type will be announced there. ## 2.2 Dependent Sum (Σ) Σ is a dependent sum type, the generalization of products. Σ type is a total space of fibration. Element of total space is formed as a pair of basepoint and fibration. #### Type-theoretical interpretation **Definition 11.** (Σ -Formation). #### **Definition 12.** (Σ -Introduction). ``` dpair (A: U) (B: A \rightarrow U) (a: A) (b: B a) : Sigma A B = (a,b) ``` #### **Definition 13.** (Σ -Elimination). ``` pr1 (A: U) (B: A -> U) (x: Sigma A B): A = x.1 pr2 (A: U) (B: A -> U) (x: Sigma A B): B (pr1 A B x) = x.2 sigInd (A: U) (B: A -> U) (C: Sigma A B -> U) (g: (a: A) (b: B a) -> C (a, b)) (p: Sigma A B): C p = g p.1 p.2 ``` #### **Theorem 8.** (Σ -Computation). #### **Theorem 9.** (Σ -Uniqueness). ``` Eta2 (A: U) (B: A -> U) (p: Sigma A B) : Equ (Sigma A B) p (pr1 A B p, pr2 A B p) ``` #### Categorical interpretation **Definition 14.** (Dependent Sum). The dependent sum along the morphism $f: A \to B$ in category C is the left adjoint $\Sigma_f: C_{/A} \to C_{/B}$ of the base change functor. #### Set-theoretical interpretation **Theorem 10.** (Axiom of Choice). If for all x:A there is y:B such that R(x,y), then there is a function $f:A\to B$ such that for all x:A there is a witness of R(x,f(x)). ``` \begin{array}{lll} ac & (A B: \ U) & (R: \ A -> B -> \ U) \\ & : & (p: \ (x : A) \ -> \ (y : B)^* (R \ x \ y)) \\ -> & (f: A -> B) \ ^* \ ((x : A) -> R(x) (f \ x)) \end{array} ``` **Theorem 11.** (Total). If fiber over base implies another fiber over the same base then we can construct total space of section over that base with another fiber. ``` total (A:U) (B C: A \rightarrow U) (f: (x:A) \rightarrow B x \rightarrow C x) (w: Sigma A B) : Sigma A C = (w.1, f (w.1) (w.2)) ``` **Theorem 12.** (Σ -Contractability). If the fiber is set then the Σ is set. **Theorem 13.** (Path Between Sigmas). Path between two sigmas $t, u : \Sigma(A, B)$ could be decomposed to sigma of two paths $p : t_1 =_A u_1$) and $(t_2 =_{B(p@i)} u_2)$. ### 2.3 Path (Ξ) The Path identity type or Ξ defines a Path space with elements and values. Elements of that space are functions from interval [0,1] to a values of that path space. This ctt file reflects 2 CCHM cubicaltt model with connections. For 3 ABCFHL yacctt model with variables please refer to ytt file. You may also want to read 4 BCH, 5 AFH. There is a 6 PO paper about CCHM axiomatic in a topos. #### Cubical interpretation Cubical interpretation was first given by Simon Huber [18] and later was written first constructive type checker in the world by Anders Mörtberg [17]. **Definition 15.** (Path Formation). ``` Hetero (A B: U)(a: A)(b: B)(P: Path U A B) : U = PathP P a b Path (A: U) (a b: A) : U = PathP (<i> A) a b ``` ²Cyril Cohen, Thierry Coquand, Simon Huber, Anders Mörtberg. Cubical Type Theory: a constructive interpretation of the univalence axiom. 2015. https://5ht.co/cubicaltt.pdf ³Carlo Angiuli, Brunerie, Coquand, Kuen-Bang Hou (Favonia), Robert Harper, Dan Licata. Cartesian Cubical Type Theory. 2017. https://5ht.co/cctt.pdf ⁴Marc Bezem, Thierry Coquand, Simon Huber. A model of type theory in cubical sets. 2014. http://www.cse.chalmers.se/~coquand/mod1.pdf ⁵Carlo Angiuli, Kuen-Bang Hou (Favonia), Robert Harper. Cartesian Cubical Computational Type Theory: Constructive Reasoning with Paths and Equalities. 2018. https://www.cs.cmu.edu/~cangiuli/papers/ccctt.pdf ⁶ Andrew Pitts, Ian Orton. Axioms for Modelling Cubical Type Theory in a Topos. 2016. https://arxiv.org/pdf/1712.04864.pdf **Definition 16.** (Path Reflexivity). Returns an element of reflexivity path space for a given value of the type. The inhabitant of that path space is the lambda on the homotopy interval [0,1] that returns a constant value a. Written in syntax as $|\langle i \rangle a|$ which equals to λ $(i:I) \rightarrow a$. **Definition 17.** (Path Application). You can apply face to path. ``` app1 (A: U)(a b:A)(p:Path A a b):A=p@0 app2 (A: U)(a b:A)(p:Path A a b):A=p@1 ``` **Definition 18.** (Path Composition). Composition operation allows to build a new path by given to paths in a connected point. $$\lambda(i:I) \to a \qquad \begin{array}{c} a & \xrightarrow{comp} & c \\ & \downarrow \\ a & \xrightarrow{p@i} & b \end{array}$$ composition **Theorem 14.** (Path Inversion). inv (A: U) (a b: A) (p: Path A a b) : Path A b a = $$<$$ i> p @ $-$ i **Definition 19.** (Connections). Connections allows you to build square with given only one element of path: i) λ $(i, j : I) \rightarrow p$ @ min(i, j); ii) λ $(i, j : I) \rightarrow p$ @ max(i, j). **Theorem 15.** (Congruence). Is a map between values of one type to path space of another type by an encode function between types. Implemented as lambda defined on [0,1] that returns application of encode function to path application of the given path to lamda argument $|\lambda|$ (i:I) \rightarrow f (p @ i)| for both cases. ``` ap (A B: U) (f: A -> B) (a b: A) (p: Path A a b) : Path B (f a) (f b) apd (A: U) (a x:A) (B: A -> U) (f: A -> B a) (b: B a) (p: Path A a x) : Path (B a) (f a) (f x) ``` **Theorem 16.** (Transport). Transports a value of the domain type to the value of the codomain type by a given path element of the path space between domain and codomain types. Defined as path composition with |[]| of a over a path p — |comp p a []|. ``` trans (A B: U) (p: Path U A B) (a: A) : B ``` #### Type-theoretical interpretation ``` Definition 20. (Singleton). ``` ``` singl(A: U) (a: A): U = (x: A) * Path A a x ``` Theorem 17. (Singleton Instance). ``` eta (A: U) (a: A): singl A a = (a, refl A a) ``` **Theorem 18.** (Singleton Contractability). ``` contr (A: U) (a b: A) (p: Path A a b) : Path (singl A a) (eta A a) (b,p) = \langle i \rangle (p @ i,\langle j \rangle p @ i/\j) ``` **Theorem 19.** (Path Elimination, Paulin-Mohring). J is formulated in a form of Paulin-Mohring and implemented using two facts that singleton are contractible and dependent function transport. ``` J (A: U) (a b: A) (P: singl A a -> U) (u: P (a, refl A a)) (p: Path A a b) : P (b,p) ``` Theorem 20. (Path Elimination, HoTT). J from HoTT book. ``` J (A: U) (a b: A) (C: (x: A) -> Path A a x -> U) (d: C a (refl A a)) (p: Path A a b) : C b p ``` Theorem 21. (Path Computation). Note that Path type has no Eta rule due to groupoid interpretation. #### Groupoid interpretation The groupoid interpretation of type theory is well known article by Martin Hofmann and Thomas Streicher, more specific interpretation of identity type as infinity groupoid. #### 2.4 Contexts Speaking of type checker execution, we introduce context or dictionary with types and terms, from which we can derive typed variables. This chain could be implemented as nested sigma types (due to R.A.G.Seely) or list types (due to Voevodsky). Categorically dependent type theory is built upon categories of contexts. **Definition 21.** (Empty Context). $$\gamma_0: \Gamma =_{def} \star$$. **Definition 22.** (Context Comprehension). $$\Gamma ; A =_{def} \sum_{\gamma : \Gamma} A(\gamma).$$ **Definition 23.** (Context Derivability). $$\Gamma \vdash A =_{def} \prod_{\gamma : \Gamma} A(\gamma).$$ #### 2.5 Universes **Definition 24.** (Terms). Point in initial object of language AST inductive definition is called a term. If type theory or language is defined as an inductive type (AST) then the term is defined as its instance. **Definition 25.** (Sorts). N-indexed set of universes $U_{n\in\mathbb{N}}$. Could have any number of elements which defines different type systems. All built-in types as long as user defined types are landed usually by default in U_0 universe. Sorts represented in type checker as a separate constructor. **Definition 26.** (Axioms). The inclusion rules $U_i : U_j, i, j \in \mathbb{N}$, that define which universe is element of another given universe. You may attach any rules that joins i, j in some way. Axioms with sorts define universe hierarchy. **Definition 27.** (Rules). The set of landings $U_i \to U_j : U_{\lambda(i,j),i,j\in N}$, where $\lambda : N \times N \to N$. These rules define term dependence or how we land (in which universe) formation rules in definitions. **Definition 28.** (Predicative hierarchy). If λ in Rules is an uncurried function $\max : N \times N \to N$ then such universe hierarchy is called predicative. **Definition 29.** (Impredicative hierarchy). If λ in Rules is a second projection of a tuple snd: $N \times N \to N$ then such universe hierarchy is called impredicative. **Definition 30.** (Definitional Equality). For any U_i , $i \in \mathbb{N}$ there is defined an equality between its members and between its instances. For all $x,y \in A$, there is defined a x=y. Definitional equality compares normalized term instances. **Definition 31.** (SAR). The universum space is configured with a triple of: i) sorts, a set of universes $U_{n\in\mathbb{N}}$ indexed over set N; ii) axioms, a set of inclusions $U_i:U_j,i,j\in\mathbb{N}$; iii) rules of term dependence universe landing, a
set of landings $U_i\to U_j:U_{\lambda(i,j),i,j\in\mathbb{N}}$, where λ could be function max (predicative) or snd (impredicative). **Example 1.** (CoC). SAR = $\{\{\star, \Box\}, \{\star: \Box\}, \{i \to j: j; i, j \in \{\star, \Box\}\}\}$. Terms live in universe \star , and types live in universe \Box . In CoC λ = snd. Example 2. $(PTS^{\infty}, MLTT^{\infty})$. SAR = $\{U_{i\in\mathbb{N}}, U_i : U_{j;i< j;i,j\in\mathbb{N}}, U_i \to U_j : U_{\lambda(i,j);i,j\in\mathbb{N}}\}$. Where U_i is a universe of *i*-level or *i*-category in categorical interpretation. The working prototype of PTS^{\infty} is given in **Issue XVI**: **Pure Type System** [19]. #### 2.6 MLTT-75 Here is given formal model of type-theoretical interpretation of Martin-Löf Type Theory. It combines 4 Path rules (no eta), 5 Π rules, and 6 Σ rules (two elims). The proof is provided by direct embedding (internalizing) the model intro the model of type checker which is even more powerful. **Definition 32.** (MLTT-75). The MLTT as a Type is defined by taking all rules for Π , Σ and Path types into one Σ telescope or context. ``` MLTT (A: U): U = (Pi_Former: (A \rightarrow U) \rightarrow U) (Pi_Intro: (B: A \rightarrow U) (a: A) \rightarrow B a \rightarrow (A \rightarrow B a)) * (Pi_Bim: (B: A \rightarrow U) (a: A) \rightarrow (A \rightarrow B a) \rightarrow B a) * (Pi_Comp_1: (B: A \rightarrow U) (a: A) (f: A \rightarrow B a) \rightarrow Path (B a) (Pi Elim B a(Pi Intro B a(f a)))(f a)) (Pi_Comp_2: (B: \overline{A} \to U) (a: A) (f: A \rightarrow B a) \rightarrow Path(A \rightarrow B a) f((x:A) \rightarrow f x)) (Sigma_Former: (A \rightarrow U) \rightarrow U) (\operatorname{Sigma_Intro}: (B: A \rightarrow U) (a: A) (b: B a) \rightarrow \operatorname{Sigma} A B) (Sigma_Elim1: (B: A \rightarrow U) : \operatorname{Sigma} A B) \to A (\overline{\text{Sigma}} \text{ Elim 2}: (B: A \rightarrow U) (x: Sigma A B) \rightarrow B (pr1 A B x)) (Sigma_Comp2: (B: A \rightarrow U) (a: A) (b: B \overline{a}) \rightarrow Path (B a) b (Sigma Elim2 B (a,b))) (Sigma_Comp3: (B: A \rightarrow U) (p: Sigma A B) \rightarrow Path (Sigma A B) p (pr1 A B p, pr2 A B p)) (Id Former: A \rightarrow A \rightarrow U) (Id_Intro: (a: A) \rightarrow Path A a a) (Id_Elim: (x: A) (C: D A) (d: C \times x (Id_Intro x)) (y: A) (p: Path A x y) \rightarrow C x y p) (Id_Comp: (a:A)(C: D A) (d: C a a (Id Intro a)) → Path (C a a (Id Intro a)) d (Id_Elim a C d a (Id_Intro a))) * U ``` **Theorem 22.** (Model Check). There is an instance of MLTT. #### Cubical Model Check The result of the work is a |mltt.ctt| file which can be runned using |cubicaltt|. Note that computation rules take a seconds to type check. #### Conclusions In this issue the type-theoretical model (interpretation) of MLTT was presented in cubical syntax and type checked in it. This is the first constructive proof of internalization of MLTT. From the theoretical point of view the landspace of possible interpretation was shown corresponding different mathematical theories for those who are new to type theory. The brief description of the previous attempts to internalize MLTT could be found as canonical example in MLTT works, but none of them give the constructive J eliminator or its equality rule. Type theoretical cubical constructions was given for the Path types along the article for other interpretations, all of them were taken from our Groupoid Infinity 7 base library. The objective of complete derivability of all eliminators, computational and uniquness rules is a basic objective for constructive mathematics as mathematical reasoning implies verification and mechanization. Yes cubical type system represent most compact system that make possible derivability of all theorems for core types which make this system as a first candidate for the metacircular type checker. Also for programming purposes we may also want to investigate Fixpoint as a useful type in coinductive and modal type theories and harmful type in theoretical foundation of type systems. Elimination the possibility of uncontrolled Fixpoint is a main objective of the correct type system for reasoning without paradoxes. By this creatiria we could filter all the fixpoint implementations being condidered harmful. Without a doubt the core type that makes type theory more like programming is the inductive type system that allows to define type families. In the $^{^7 {}m https://groupoid.space/}$ Табл. 2: * | Table. Core Features | | | | | | | |----------------------|---------------------------------|-------------------------------------|--|---|---|---| | Π | \sum | = | Path | U^{∞} | Co/Fix | Lazy | | X | | | | | | | | \mathbf{X} | X | X | | | | | | X | | | | X | | | | \mathbf{X} | X | | X | X | | | | X | | X | X | X | | | | X | X | X | | | X | | | X | X | | | | X | X | | \mathbf{X} | X | X | X | | X | | | | x
x
x
x
x
x
x | Π Σ x x x x x x x x x x x x x | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c cccc} \Pi & \Sigma & \equiv & Path \\ \hline x & & & \\ x & x & x & \\ x & & & \\ x & x &$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | following Issue II will be shown the semantics and embedding of inductive types with several types of Inductive-Recursive encodings. Табл. 3: * **Table**. Inductive Type Systems | Table: Inductive Type bystems | | | | | |-------------------------------|--------------|------------|------|--| | Lang | Co/Inductive | Quot/Trunc | HITs | | | System-D | X | | | | | Lean | X | X | | | | NuPRL | X | X | | | | Arend | X | X | X | | | Agda, Coq | X | | X | | | cubicaltt, yacctt, RedPRL | X | | X | | Further research of the most pure type theory on a weak fibrations and pure Kan oprations without interval lattice structure (connections, de Morgan algebra, connection algebras) and diagonal coersions could be made on the way of building a minimal homotopy core [2]. The next language after **Henk** and **Per** will be **Anders** with homotopy type system and infinite number of universes. Along with **Joe** cartesian interpreter this evaluators form a set of languages as a part of conceptual model of theorem proving system with formalized virtual machine as extraction target. Табл. 4: * **Table**. Cubical Type Systems | | V 1 | v | | |-----------------------|----------------|----------|------------------------------------| | Lang | Interval | Diagonal | Kan/Coe | | BCH, cubical | | | $0 \to r, 1 \to r$ | | CCHM, cubicaltt, Agda | \vee, \wedge | | $0 \rightarrow 1$ | | Dedekind | \vee, \wedge | | $0 \rightarrow 1, 1 \rightarrow 0$ | | AFH/ABCFHL, yacctt | | X | $r \rightarrow s$ | | $\mathrm{HTS/CMS}$ | | | $r \rightarrow s, weak$ | #### Further Research This article opens the door to a series that will unvail the different topics of homotopy type theory with practical emphasis to cubical type checkers. The Foundations volume of articles define formal programming language with geometric foundations and show how to prove properties of such constructions. The second volume of article is dedicated to cover the programming and modeling of Mathematics. **Issue I: Type Theory**. The first volume of definitions gathered into one article dedicated to various \prod , \sum and \equiv properties and internalization of MLTT in the host language typechecker. **Issue II: Inductive Types**. This episode tales a story of inductive types, their encodings, induction principle and its models. **Issue III: Homotopy Type Theory**. This issue is try to present the Homotopy Type Theory without higher inductive types to neglect the core and principles of homotopical proofs. **Issue IV: Higher Inductive Types.** The metamodel of HIT is a theory of CW-complexes. The category of HIT is a homotopy category. This volume finalizes the building of the computational theory. **Issue V: Modalities.** The constructive extensions with additional context and adjoint transports between toposes (cohesive toposes). This approach serves the needs of modal logics, differential geometry, cohomology. The main intention of Foundation volume is to show the internal language of working topos of CW-complexes, the construction of fibrational sheaf type theory. Issue XVI: Pure Type System. Pure Type System named after Henk Barendregt. Issue XVII: Inductive Type System. Inductive Type System named after Per Martin-Löf. Issue XIX: Modal Homotopy Type System. Modal Homotopy Type System named after Anders Mörtberg. ## Література - [1] Vladimir Voevodsky et al., Homotopy Type Theory, in Univalent Foundations of Mathematics, 2013. - [2] Evan Cavallo, Anders Mörtberg, and Andrew W. Swan, *Unifying Cubical Models of Univalent Type Theory*, Preprint, 2019. http://www.cs.cmu.edu/~amoertbe/papers/unifying.pdf - [3] Per Martin-Löf and Giovanni Sambin, The Theory of Types, in Studies in Proof Theory, 1972. - [4] Per Martin-Löf, An Intuitionistic Theory of Types: Predicative Part, in Studies in Logic and the Foundations of Mathematics, vol. 80, pp. 73–118, 1975. doi:10.1016/S0049-237X(08)71945-1 - [5] Per Martin-Löf and Giovanni Sambin, Intuitionistic Type Theory, in Studies in Proof Theory, 1984. - [6] Thierry Coquand and Gérard Huet, The Calculus of Constructions, in Information and Computation, pp. 95–120, 1988. doi:10.1016/0890-5401(88)90005-3 - [7] Martin Hofmann and Thomas Streicher, *The Groupoid Interpretation of Type Theory*, in *Venice Festschrift*, Oxford University Press, pp. 83–111, 1996. - [8] Claudio Hermida and Bart Jacobs, Fibrations with Indeterminates: Contextual and Functional Completeness for Polymorphic Lambda Calculi, in
Mathematical Structures in Computer Science, vol. 5, pp. 501–531, 1995. - [9] Alexandre Buisse and Peter Dybjer, The Interpretation of Intuitionistic Type Theory in Locally Cartesian Closed Categories an Intuitionistic Perspective, in Electronic Notes in Theoretical Computer Science, pp. 21–32, 2008. doi:10.1016/j.entcs.2008.10.003 - [10] Andreas Abel, Thierry Coquand, and Peter Dybjer, On the Algebraic Foundation of Proof Assistants for Intuitionistic Type Theory, in Functional and Logic Programming, Springer, Berlin, Heidelberg, pp. 3–13, 2008. - [11] Pierre-Louis Curien et al., Revisiting the Categorical Interpretation of Dependent Type Theory, in Theoretical Computer Science, vol. 546, pp. 99–119, 2014. doi:10.1016/j.tcs.2014.03.003 - [12] Errett Bishop, Foundations of Constructive Analysis, 1967. - [13] Bengt Nordström, Kent Petersson, and Jan M. Smith, *Programming in Martin-Löf's Type Theory*, Oxford University Press, 1990. - [14] Matthieu Sozeau and Nicolas Tabareau, Internalizing Intensional Type Theory, unpublished. - [15] Martin Hofmann and Thomas Streicher, The Groupoid Model Refutes Uniqueness of Identity Proofs, in Logic in Computer Science (LICS'94), IEEE, pp. 208–212, 1994. - [16] Bart Jacobs, Categorical Logic and Type Theory, vol. 141, 1999. - [17] Anders Mörtberg et al., Cubical Type Theory: A Constructive Interpretation of the Univalence Axiom, arXiv:1611.02108, 2017. - [18] Simon Huber, Cubical Interpretations of Type Theory, Ph.D. thesis, Dept. of Computer Science and Engineering, University of Gothenburg, 2016. - [19] Maksym Sokhatskyi and Pavlo Maslianko, The Systems Engineering of Consistent Pure Language with Effect Type System for Certified Applications and Higher Languages, in Proc. 4th Int. Conf. Mathematical Models and Computational Techniques in Science and Engineering, 2018. doi:10.1063/1.5045439 # Issue II: Inductive Types Maksym Sokhatsky
i $^{\rm 1}$ 1 National Technical University of Ukraine Igor Sikorsky Kyiv Polytechnical Institute $\,$ 5 травня 2025 р. #### Анотація Impredicative Encoding of Inductive Types in HoTT. **Keywords**: Formal Methods, Type Theory, Programming Languages, Theoretical Computer Science, Applied Mathematics, Cubical Type Theory, Martin-Löf Type Theory ## 3 Inductive Encodings #### 3.1 Church Encoding You know Church encoding which also has its dependent alanolgue in CoC, however in Coq it is imposible to detive Inductive Principle as type system lacks fixpoint and functional extensionality. The example of working compiler of PTS languages are Om and Morte. Assume we have Church encoded NAT: $$nat = (X:U) -> (X -> X) -> X -> X$$ where first parameter (X - > X) is a *succ*, the second parameter X is *zero*, and the result of encoding is landed in X. Even if we encode the parameter $$list (A: U) = (X:U) -> X -> (A -> X) -> X$$ and paremeter A let's say live in 42 universe and X live in 2 universe, then by the signature of encoding the term will be landed in X, thus 2 universe. In other words such dependency is called impredicative displaying that landed term is not a predicate over parameters. This means that Church encoding is incompatible with predicative type checkers with predicative of predicative-cumulative hierarchies. - 3.2 Scott Encoding - 3.3 Parigot Encoding - 3.4 CPS Encoding - 3.5 Interaction Networks Encoding #### 3.6 Impredicative Encoding In HoTT n-types is encoded as n-groupoids, thus we need to add a predicate in which n-type we would like to land the encoding: $$NAT (A: U) = (X:U) -> isSet X -> X -> (A -> X) -> X$$ Here we added is Set predicate. With this motto we can implement propositional truncation by landing term in is Prop or even HIT by langing in is-Groupoid: TRUN (A:U) type = (X: U) $$\rightarrow$$ isProp X \rightarrow (A \rightarrow X) \rightarrow X S1 = (X:U) \rightarrow isGroupoid X \rightarrow ((x:X) \rightarrow Path X x x) \rightarrow X MONOPLE (A:U) = (X:U) \rightarrow isSet X \rightarrow (A \rightarrow X) \rightarrow X NAT = (X:U) \rightarrow isSet X \rightarrow (A \rightarrow X) \rightarrow X The main publication on this topic could be found at [11] and [10]. #### The Unit Example Here we have the implementation of Unit impredicative encoding in HoTT. ``` upPath (X Y:U)(f:X\to Y)(a:X\to X): X\to Y=oXXYfa (X Y:U)(f:X\to Y)(b:Y\to Y): X\to Y=oXYYb f downPath naturality (X Y:U)(f:X->Y)(a:X->X)(b:Y->Y): U = Path (X->Y) (upPath X Y f a) (downPath X Y f b) unitEnc': U = (X: U) \rightarrow isSet X \rightarrow X isUnitEnc (one: unitEnc'): U = (X Y:U)(x:isSet X)(y:isSet Y)(f:X\rightarrow Y) \rightarrow naturality X Y f (one X x)(one Y y) unitEnc: U = (x: unitEnc') * isUnitEnc x \begin{array}{ll} \text{unitEnc. } & \text{Colored} \\ & \text{unitEncStar: unitEnc} \\ & \text{idfun } X, \setminus (X \text{ Y: } U) \text{ ($_$: isSet } X) \text{ ($_$: isSet } Y) \text{->} \text{refl } (X \text{->} Y)) \end{array} unitEncRec (C: U) (s: isSet C) (c: C): unitEnc -> C = \ \ (z:\ unitEnc) \rightarrow z.1\ C\ s\ c unitEncBeta (C: U) (s: isSet C) (c: C) : Path C (unitEncRec C s c unitEncStar) c = refl C c unitEncEta (z: unitEnc): Path unitEnc unitEncStar z = undefined unitEncInd \ (P:\ unitEnc \ -\!\!\!> U) \ (a:\ unitEnc)\colon P\ unitEncStar \ -\!\!\!> P\ a = subst unitEnc P unitEncStar a (unitEncEta a) unitEncCondition (n: unitEnc'): isProp (isUnitEnc n) = \langle (f g: isUnitEnc n) \rightarrow \rangle \begin{array}{c} \langle h \rangle \setminus (x \ y \colon U) \ - \rangle \setminus (X \colon isSet \ x) \ - \rangle \setminus (Y \colon isSet \ y) \\ - \rangle \setminus (F \colon x \ - \rangle \ y) \ - \rangle < i \rangle \setminus (R \colon x) \ - \rangle \ Y \ (F \ (n \ x \ X \ R)) \ (n \ y \ Y \ (F \ R)) \end{array} (<\!j\!>\ f\ x\ y\ X\ Y\ F\ @\ j\ R)\ (<\!j\!>\ g\ x\ y\ X\ Y\ F\ @\ j\ R)\ @\ h\ @\ i ``` #### 3.7 Lambek Encoding: Homotopy Initial Algebras ## 4 Inductive Types #### 4.1 W Well-founded trees without mutual recursion represented as W-types. **Definition 33.** (W-Formation). For $A : \mathcal{U}$ and $B : A \to \mathcal{U}$, type W is defined as $W(A, B) : \mathcal{U}$ or $$W_{(x:A)}B(x):\mathcal{U}.$$ $$\operatorname{def} \ W \ (A : U) \ (B : A \to U) : U := W \ (x : A) \,, \ B \ x$$ **Definition 34.** (W-Introduction). Elements of $W_{(x:A)}B(x)$ are called well-founded trees and created with single sup constructor: $$\sup: W_{(x:A)}B(x).$$ ``` def sup$ '$ (A: U) (B: A \rightarrow U) (x: A) (f: B x \rightarrow W' A B) : W' A B := sup A B x f ``` **Theorem 23.** (Induction Principle ind_{W}). The induction principle states that for any types $A:\mathcal{U}$ and $B:A\to\mathcal{U}$ and type family C over W(A,B) and the function g:G, where $$G = \prod_{x:A} \prod_{f:B(x) \land \mathsf{BW}(A,B)} \prod_{b:B(x)} C(f(b)) \land C(\sup(x,f))$$ there is a dependent function: $$\operatorname{ind}_{\operatorname{W}}: \prod_{C:\operatorname{W}(A,B) \not \bowtie \mathcal{U}} \prod_{g:G} \prod_{a:A} \prod_{f:B(a) \not \bowtie \operatorname{W}(A,B)} \prod_{b:B(a)} C(f(b)).$$ ``` def W-ind (A : U) (B : A \rightarrow U) (C : (W (x : A), B x) \rightarrow U) (g : \Pi (x : A) (f : B x \rightarrow (W (x : A), B x)), (\Pi (b : B x), C (f b)) \rightarrow C (sup A B x f)) (a : A) (f : B a \rightarrow (W (x : A), B x)) (b : B a) : C (f b) := ind^W A B C g (f b) ``` **Theorem 24.** (ind_W Computes). The induction principle ind^W satisfies the equation: $$\operatorname{ind}_{W}$$ - $\beta : g(a, f, \lambda b.\operatorname{ind}^{W}(g, f(b)))$ = $_{def} \operatorname{ind}_{W}(g, \sup(a, f)).$ 4.2 M ### 4.3 Empty The Empty type represents False-type logical $\mathbf{0}$, type without inhabitants, void or \bot (Bottom). As it has not inhabitants it lacks both constructors and eliminators, however, it has induction. **Definition 35.** (Formation). Empty-type is defined as built-in **0**-type: $$\mathbf{0}:\mathcal{U}.$$ **Theorem 25.** (Induction Principle ind_0). **0**-type is satisfying the induction principle: $$\operatorname{ind}_0: \prod_{C: \mathbf{0} \to \mathcal{U}} \prod_{z: \mathbf{0}} C(z).$$ $\label{eq:conditional} \text{def Empty--ind } (C\colon \ \mathbf{0} \to U) \ \ (z\colon \ \mathbf{0}) \ : \ C\ z \ := \ \text{ind}_0 \ \ (C\ z) \ z$ **Definition 36.** (Negation or isEmpty). For any type A negation of A is defined as arrow from A to **0**: $$\neg A := A \to \mathbf{0}.$$ def is Empty (A: U): $U := A \rightarrow 0$ The witness of $\neg A$ is obtained by assuming A and deriving a contradiction. This techniques is called proof of negation and is applicable to any types in constrast to proof by contradiction which implies $\neg \neg A \to A$ (double negation elimination) and is applicable only to decidable types with $\neg A + A$ property. ## **4.4** Unit Unit type is the simplest type equipped with full set of MLTT inference rules. It contains single inhabitant \star (star). - 4.5 Bool - 4.6 Maybe - 4.7 Either - 4.8 Nat - 4.9 List - 4.10 Vector - 4.11 Stream - 4.12 Interpreter ## Література - [1] Frank Pfenning and Christine Paulin-Mohring, Inductively Defined Types in the Calculus of Constructions, in Proc. 5th Int. Conf. Mathematical Foundations of Programming Semantics, 1989, pp. 209–228. doi:10.1007/BFb0040259 - [2] Christine Paulin-Mohring, Inductive Definitions in the System Coq: Rules and Properties, in Typed Lambda Calculi and Applications (TLCA), 1993, pp. 328–345. doi:10.1007/BFb0037116 - [3] Christine Paulin-Mohring, *Defining Inductive Sets in Type Theory*, in: G. Huet and G. Plotkin (eds), *Logical Environments*, Cambridge University Press, 1994, pp. 249–272. - [4] Peter Dybjer, Inductive Sets and Families in Martin-Löf's Type Theory and Their Set-Theoretic Semantics, Lecture Notes in Computer Science, 530, 1991, pp. 280–306. doi:10.1007/BFb0014059 - [5] Peter Dybjer, Inductive Families, Formal Aspects of Computing, 6(4), 1994, pp. 440–465. doi:10.1007/BF01211308 - [6] Peter Dybjer, Representing inductively defined sets by wellorderings in Martin-Löf's type
theory, Theoretical Computer Science, 176(1–2), 1997, pp. 329–335. doi:10.1016/S0304-3975(96)00145-4 - [7] Martin Hofmann, Extensional Constructs in Intensional Type Theory, PhD thesis, University of Edinburgh, 1995. https://www2.informatik.uni-freiburg.de/~mhofmann/phdthesis.pdf - [8] Martin Hofmann, Syntax and Semantics of Dependent Types, in: Semantics and Logics of Computation, 1995, pp. 79–130. - [9] Newstead, C. (2018). Algebraic Models of Dependent Type Theory. PhD thesis, Carnegie Mellon University. Available at https://arxiv.org/abs/2103.06155. - [10] Sam Speight, *Impredicative Encoding of Inductive Types in HoTT*, 2017. https://github.com/sspeight93/Papers/ - [11] Steve Awodey, Impredicative Encodings in HoTT, 2017. https://www.newton.ac.uk/files/seminar/20170711090010001-1009680.pdf - [12] Steve Awodey. Type theory and homotopy, 2010. https://arxiv.org/abs/1010.1810 - [13] Thorsten Altenkirch, Neil Ghani, Peter Hancock, Conor McBride, and Peter Morris. *Indexed Containers. Logical Methods in Computer Science*, 18(2), 2022, pp. 15:1–15:37. https://lmcs.episciences.org/ - [14] Marcelo P. Fiore, Andrew M. Pitts, and S. C. Steenkamp. *Quotients, Inductive Types, & Quotient Inductive Types.* University of Cambridge, 2022. https://arxiv.org/pdf/1705.07088 - [15] Thorsten Altenkirch, Neil Ghani, and Peter Morris. Containers—Constructively, 2012. https://arxiv.org/pdf/1201.3898 - [16] Thorsten Altenkirch, Conor McBride, and James Chapman. *Towards Observational Type Theory*, 2013. https://arxiv.org/pdf/1307.2765 - [17] Peter Dybjer, Representing inductively defined sets by wellorderings in Martin-Löf's type theory, Theoretical Computer Science, 176(1–2), 1997, pp. 329–335. doi:10.1016/S0304-3975(96)00145-4 - [18] Ieke Moerdijk and Erik Palmgren, Wellfounded trees in categories, Annals of Pure and Applied Logic, 104(1-3), 2000, pp. 189-218. doi:10.1016/S0168-0072(00)00012-9 - [19] Michael Abbott, Thorsten Altenkirch, and Neil Ghani, Containers: Constructing strictly positive types, Theoretical Computer Science, 342(1), 2005, pp. 3–27. doi:10.1016/j.tcs.2005.06.002 - [20] Benno van den Berg and Ieke Moerdijk, W-types in sheaves, 2008. https://arxiv.org/abs/0810.2398 - [21] Nicola Gambino and Martin Hyland, Wellfounded Trees and Dependent Polynomial Functors, in TYPES 2003, LNCS 3085, Springer, 2004, pp. 210–225. doi:10.1007/978-3-540-24849-1 14 - [22] Michael Abbott, Thorsten Altenkirch, and Neil Ghani, Representing Nested Inductive Types using W-types, in ICALP 2004, LNCS 3142, Springer, 2004, pp. 124–135. doi:10.1007/978-3-540-27836-8 - [23] Steve Awodey, Nicola Gambino, and Kristina Sojakova, *Inductive types in homotopy type theory*, *LICS 2012*, pp. 95–104. doi:10.1109/LICS.2012.21, https://arxiv.org/abs/1201.3898 - [24] Benno van den Berg and Ieke Moerdijk, W-types in Homotopy Type Theory, Mathematical Structures in Computer Science, 25(5), 2015, pp. 1100–1115. doi:10.1017/S0960129514000516, https://arxiv.org/abs/1307.2765 - [25] Kristina Sojakova, Higher Inductive Types as Homotopy-Initial Algebras, ACM SIGPLAN Notices, 50(1), 2015, pp. 31-42. doi:10.1145/2775051.2676983, https://arxiv.org/abs/1402.0761 - [26] Steve Awodey, Nicola Gambino, and Kristina Sojakova, Homotopy-initial algebras in type theory, Journal of the ACM, 63(6), 2017, Article 45. doi:10.1145/3006383, https://arxiv.org/abs/1504.05531 - [27] Christian Sattler, On relating indexed W-types with ordinary ones, in TYPES 2015, pp. 71-72. https://types2015.inria.fr/slides/sattler.pdf - [28] Per Martin-Löf, Constructive Mathematics and Computer Programming, in: Proc. 6th Int. Congress of Logic, Methodology and Philosophy of Science, 1979. Studies in Logic and the Foundations of Mathematics 104 (1982), pp. 153–175. doi:10.1016/S0049-237X(09)70189-2 - [29] Per Martin-Löf (notes by Giovanni Sambin), *Intuitionistic type theory*, Lecture notes Padua 1984, Bibliopolis, Napoli (1984). - [30] Jasper Hugunin, Why Not W?, LIPIcs, 188 (TYPES 2020), 2021. $doi:10.4230/LIPIcs.\,TYPES.2020.8$ - [31] Nils Anders Danielsson, *Positive h-levels are closed under W*, 2012. https://www.cse.chalmers.se/~nad/listings/w-level/WLevel.html - [32] Jasper Hugunin, IWTypes Repository. https://github.com/jashug/IWTypes ## Issue III: Homotopy Type Theory Maksym Sokhatsky
i $^{\rm 1}$ ¹ National Technical University of Ukraine Igor Sikorsky Kyiv Polytechnical Institute 5 травня 2025 р. #### Анотація Here is presented destinctive points of Homotopy Type Theory as an extension of Martin-Löf Type Theory but without higher inductive types which will be given in the next issue. The study of identity system is given. Groupoid (categorical) interpretation is presented as categories of spaces and paths between them as invertible morphisms. At last constructive proof $\Omega(S^1) = \mathbb{Z}$ is given through helix. Keywords: Homotopy Theory, Type Theory ## 5 Groupoid Interpretation ## 5.1 Introduction: Type Theory Type theory is a universal programming language for pure mathematics, designed for theorem proving. It supports an arbitrary number of consistent axioms, structured as pseudo-isomorphisms consisting of *encode* functions (methods for constructing type elements), *decode* functions (dependent eliminators of the universal induction principle), and their equations—beta and eta rules governing computability and uniqueness. As a programming language, type theory includes basic primitives (axioms as built-in types) and accompanying documentation, such as lecture notes or textbooks, explaining their applications, including: - Function (Π) - Context (Σ) - Identification (=) - Polynomial (W) - Path (Ξ) - Gluing (Glue) - Infinitesimal (3) - Complex (**HIT**) Students (10) are tasked with applying type theory to prove an initial but non-trivial result addressing an open problem in one of the following areas offered by the Department of Pure Mathematics (KM-111): $\label{eq:Mathematics} \operatorname{Mathematics} := \begin{cases} \operatorname{Homotopy \ Theory} \\ \operatorname{Homological \ Algebra} \\ \operatorname{Category \ Theory} \\ \operatorname{Functional \ Analysis} \\ \operatorname{Differential \ Geometry} \end{cases}$ ## 5.2 Motivation: Homotopy Type Theory The primary motivation of homotopy type theory is to provide computational semantics for homotopic types and CW-complexes. The central idea, as described in, is to combine function spaces (Π), context spaces (Σ), and path spaces (Ξ) to form a fiber bundle, proven within HoTT to coincide with the Π type itself. Key definitions include: ``` def contr (A: U) : U := \Sigma (x: A), \Pi (y: A), \Xi A x y def fiber (A B: U) (f: A \rightarrow B) (y: B): U := \Sigma (x: A), Path B y (f x) def isEquiv (A B: U) (f: A \rightarrow B): U := \Pi (y: B), contr(fiber A B f y) def equiv (X Y: U): U := \Sigma (f: X \rightarrow Y), isEquiv X Y f def ua (A B : U) (p : \Xi U A B) : equiv A B := transp (<i> equiv A (p @ i)) 0 (idEquiv A) ``` The absence of an eta-rule for equality implies that not all proofs of the same path space are equal, resulting in a multidimensional ∞ -groupoid structure for path spaces. Further definitions include: ``` \begin{array}{l} \text{def isProp } (A:U):U\\ := \Pi \ (a\ b:A)\,, \ \Xi\ A\ a\ b\\ \\ \text{def isSet } (A:U):U\\ := \Pi \ (a\ b:A)\ (x\ y:\Xi\ A\ a\ b)\,, \ \Xi\ (\Xi\ A\ a\ b)\ x\ y\\ \\ \text{def isGroupoid } (A:U):U\\ := \Pi \ (a\ b:A)\ (x\ y:\Xi\ A\ a\ b)\ (i\ j:\Xi\ (\Xi\ A\ a\ b)\ x\ y)\,, \\ \Xi\ (\Xi\ (\Xi\ A\ a\ b)\ x\ y)\ i\ j \end{array} ``` The groupoid interpretation raises questions about the existence of a language for mechanically proving all properties of the categorical definition of a groupoid: ## 5.3 Metatheory: Adjunction Triples The course is divided into four parts, each exploring type-axioms and their meta-theoretical adjunctions. #### 5.3.1 Fibrational Proofs $$\Sigma \dashv f_{\star} \dashv \Pi$$ Fibrational proofs are modeled by primitive axioms, which are type-theoretic representations of categorical meta-theoretical models of adjunctions of three Cockett-Reit functors, giving rise to function spaces (Π) and pair spaces (Σ). These proof methods enable direct analysis of fibrations. #### 5.3.2 Equality Proofs $$Q \dashv \Xi \dashv C$$ In intensional type theory, the equality type is embedded as type-theoretic primitives of categorical meta-theoretical models of adjunctions of three Jacobs-Lambek functors: quotient space (Q), identification system (Ξ) , and contractible space (C). These methods allow direct manipulation of identification systems, strict for set theory and homotopic for homotopy theory. #### 5.3.3 Inductive Proofs $$W\dashv \odot\dashv M$$ Inductive types in type theory can be embedded as polynomial functors (W, M) or general inductive type schemes (Calculus of Inductive Constructions), with properties including: 1) Verification of program finiteness; 2) Verification of strict positivity of parameters; 3) Verification of mutual recursion. In this course, induction and coinduction are introduced as type-theoretic primitives of categorical meta-theoretical models of adjunctions of polynomial functors (Lambek-Bohm), enabling manipulation of initial and terminal algebras, algebraic recursive data types, and infinite processes. Higher inductive proofs, where constructors include path spaces, are modeled by polynomial functors using monad-algebras and comonad-coalgebras (Lumsdaine-Shulman). #### **Historical Notes** Homotypy Type Theory takes its origins in 1996 from groupoid interpretation by Hofmann and Streicher's, and later (in 10 years) was formalized by Awodey, Warren and Voevodsky. Voevodsky constructed Kan simplicial sets interpretation of type theory and discovered the property of this model, that was named univalence. This property allows to identify isomorphic structures in terms of type theory. Homotopy type theory to classical homotopy theory is like Euclidian syntethic geometry
(points, lines, axioms and deduction rules) to analytical geometry with cartesian coordinates on \mathbb{R}^n (geometric and algebraic)¹. In the same way as inductive types extends MLTT for inductive programming, the higher inductive types (HIT) extend homotopy type theory for geometry programming. You can directly encode CW-complexes by using HIT. The definition of HIT syntax will be given in the next Issue IV: Higher Inductive Types. Cubical with HITs has very lightweight core and syntax, and is an internal language of $(\infty, 1)$ -topos. Cubical with [0, 1] Path types but without HITs is an internal language of $(\infty, 1)$ -categories, while MLTT is an internal language of locally cartesian closed categories. ### Acknowledgement This article is dedicated to Ihor Horobets and written on his request for clarification and direct intoduction to HoTT. $^{^1}$ We will denote geometric, type theoretical and homotopy constants bold font **R** while analitical will be denoted with double lined letters \mathbb{R} . ## 6 Homotopy Type Theory #### 6.1 Identity Systems **Definition 37.** (Identity System). An identity system over type A in universe X_i is a family $R: A \to A \to X_i$ with a function $r_0: \Pi_{a:A}R(a,a)$ such that any type family $D: \Pi_{a,b:A}R(a,b) \to X_i$ and $d: \Pi_{a:A}D(a,a,r_0(a))$, there exists a function $f: \Pi_{a,b:A}\Pi_{r:R(a,b)}D(a,b,r)$ such that $f(a,a,r_0(a)) = d(a)$ for all a:A. **Example 3.** There are number of equality signs used in this tutorial, all of them listed in the following table of identity systems: | Sign | Meaning | |-----------------------|--------------| | $=_{def}$ | Definition | | = | Id | | = | Path | | \simeq | Equivalence | | \cong | Isomorphism | | \sim | Homotopy | | \approx | Bisimulation | **Theorem 26.** (Fundamental Theorem of Identity System). **Definition 38.** (Strict Identity System). An identity system over type A and universe of pretypes V_i is called strict identity system (=), which respects UIP. **Definition 39.** (Homotopy Identity System). An identity system over type A and universe of homotopy types U_i is called homotopy identity system (\equiv), which models discrete infinity groupoid. ## 6.2 Path (Ξ) The homotopy identity system defines a **Path** space indexed over type A with elements as functions from interval [0,1] to values of that path space $[0,1] \to A$. HoTT book defines two induction principles for identity types: path induction and based path induction. **Definition 40.** (Path Formation). $$\equiv : U =_{def} \prod_{A:U} \prod_{x,y:A} \mathbf{Path}_A(x,y).$$ ``` \begin{array}{l} \mathrm{def} \ \Xi \ (A : \ U) \ (x \ y : A) \ : \ U \\ := \ \mathrm{PathP} \ (< > A) \ x \ y \\ \\ \mathrm{def} \ \Xi' \ (A : \ U) \ (x \ y : A) \\ := \ \Pi \ (i : \ I) \ , \\ A \ [\partial \ i \ | -> \ [(i = 0) \to x \ , \\ (i = 1) \to y \]] \end{array} ``` **Definition 41.** (Path Introduction). Returns a reflexivity path space for a given value of the type. The inhabitant of that path space is the lambda on the homotopy interval [0,1] that returns a constant value x. Written in syntax as [i]x. $$\mathrm{id}_{\equiv}: x \equiv_A x =_{def} \prod_{A:U} \prod_{x:A} [i]x$$ $$\begin{array}{lll} \text{def idp } (A\colon\thinspace U) & (x\colon\thinspace A) \\ \colon \Xi \ A \ x \ x & := <_{>} x \end{array}$$ **Definition 42.** (Path Application). **Definition 43.** (Path Connections). Connections allow you to build a square with only one element of path: i) [i,j]p @ min(i,j); ii) [i,j]p @ max(i,j). **Definition 44.** (Path Inversion). Theorem 27. (Congruence). $$\operatorname{ap}: f(a) \equiv f(b) =_{def}$$ $$\prod_{A:U} \prod_{a,x:A} \prod_{B:A \to U} \prod_{f:\Pi(A,B)} \prod_{p:a \equiv_A x} [i] f(p@i).$$ Maps a given path space between values of one type to path space of another type using an encode function between types. Implemented as a lambda defined on [0,1] that returns application of encode function to path application of the given path to lamda argument [i]f(p@i) in both cases. **Definition 45.** (Generalized Transport Kan Operation). Transports a value of the left type to the value of the right type by a given path element of the path space between left and right types. $$\begin{aligned} \text{transport}: A(0) \to A(1) =_{def} \\ \prod_{A:I \to U} \prod_{r:I} \\ \lambda x, \mathbf{transp}([i]A(i), 0, x). \end{aligned}$$ $$\begin{array}{l} \text{def transp'} \ (A:\ U) \ (x\ y:\ A) \ (p\ :\ PathP\ (\<\ ;_>A)\ x\ y) \ (i:\ I) \\ :=\ transp\ (\<\ ;i>\ (\setminus(_:A)\ ,A)\ (p\ @\ i\,))\ i\ x \\ \\ \text{def transp}^U\ (A\ B:\ U) \ (p\ :\ PathP\ (\<\ ;_>U)\ A\ B)\ (i:\ I) \end{array}$$ **Definition 46.** (Partial Elements). $:= transp (\< i > (\setminus (_:U), U) (p @ i)) i A$ $$\operatorname{Partial}: V =_{def} \prod_{A:U} \prod_{i:I} \mathbf{Partial}(A, i).$$ $$\begin{array}{lll} \text{def Partial'} & (A : U) & (i : I) \\ : V := & \text{Partial } A & i \end{array}$$ **Definition 47.** (Cubical Subtypes). Subtype : $$V =_{def}$$ $$\prod_{A:U} \prod_{i:I} \prod_{u: \mathbf{Partial}(A,i)} A[i \mapsto u].$$ **Definition 48.** (Cubical Elements). $$\begin{split} & \text{inS}: A \ [(i=1) \mapsto a] =_{def} \\ & \prod_{A:U} \prod_{i:I} \prod_{a:A} \mathbf{inc}(A,i,a). \\ & \text{outS}: A \ [i \mapsto u] \to A =_{def} \\ & \prod_{A:U} \prod_{i:I} \prod_{u:\mathbf{Partial}(A,i)} \mathbf{ouc}(a). \end{split}$$ def in S (A : U) (i : I) (a : A) : sub A i [(i = 1) $$\rightarrow$$ a] := inc A i a $$\begin{array}{l} {\rm def~outS~(A~:~U)~(i~:~I)~(u~:~Partial~A~i)} \\ {\rm :~A~[i~\mapsto u]~} {\rm -\!>~A~:=~\lambda~(a:~A[i~\mapsto u])~,~ouc~a} \end{array}$$ Theorem 28. (Heterogeneous Composition Kan Operation). $$comp_{CCHM}: A(0) \ [r \mapsto u(0)] \to A(1) =_{def}$$ $$\prod_{A:U} \prod_{r:I} \prod_{u:\Pi_{i:I} \mathbf{Partial}(A(i),r)}$$ $\lambda u_0, \mathbf{hcomp}(A(1), r, \lambda i.$ $$[(r\!=\!1)\!\rightarrow\!\mathbf{transp}([j]A(i/j),i,u(i,1\!=\!1))],$$ $\mathbf{transp}([i]A(i), 0, \mathbf{ouc}(u_0))).$ $$\begin{array}{l} \text{def compCCHM } (A:I \to U) \ (r:I) \\ (u:\Pi \ (i:I), \ Partial \ (A \ i) \ r) \\ (u_0:(A \ 0)[r \mapsto u \ 0]) : A \ 1 \\ := \text{hcomp } (A \ 1) \ r \ (\lambda \ (i:I), \\ [\ (r=1) \to \text{transp } (A \ (i \lor j)) \ i \ (u \ i \ l=1)]) \\ (\text{transp } (A \ i) \ 0 \ (\text{ouc } u_0)) \end{array}$$ Theorem 29. (Homogeneous Composition Kan Operation). $$\mathrm{comp}_{\mathrm{CHM}}:A\ [r\mapsto u(0)]\to A=_{def}$$ $$\prod_{A:U} \prod_{r:I} \prod_{u:I \to \mathbf{Partial}(A,r)}$$ $\lambda u_0, \mathbf{hcomp}(A, r, u, \mathbf{ouc}(u_0)).$ $$\begin{array}{l} \text{def compCHM } (A:U) \ (r:I) \\ \quad (u:I \rightarrow Partial \ A \ r) \ (u_0:A[r \mapsto u \ 0]) : A \\ := hcomp \ A \ r \ u \ (ouc \ u_0) \end{array}$$ Theorem 30. (Substitution). subst : $$P(x) \to P(y) =_{def}$$ $$\prod_{A:U} \prod_{P:A \to U} \prod_{x,y:A} \prod_{p:x=y}$$ $\lambda e. \mathbf{transp}([i]P(p@i), 0, e).$ Other synonyms are mapOnPath and cong. Theorem 31. (Path Composition). $$\begin{array}{ccc} a & \xrightarrow{pcomp} & a \\ & \downarrow & \downarrow & \downarrow \\ & a & \xrightarrow{p \otimes i} & b \end{array}$$ ``` def pcomp (A: U) (a b c: A) (p: Path A a b) (q: Path A b c) : Path A a c := subst A (Path A a) b c q p ``` Composition operation allows building a new path from two given paths in a connected point. The proofterm is $\mathbf{comp}([i]\mathbf{Path}_A(a, q@i), p, [])$. Theorem 32. (J by Paulin-Mohring). ``` def J (A: U) (a b: A) (P: singl A a -> U) (u: P (a, refl A a)) : Π (p: Path A a b), P (b,p) ``` J is formulated in a form of Paulin-Mohring and implemented using two facts that singletons are contractible and dependent function transport. **Theorem 33.** (Contractability of Singleton). ``` \begin{array}{l} \text{def singl } (A:\ U) \ (a:\ A) : \ U \\ := \Sigma \ (x:\ A) \,, \ \ \text{Path } A \ a \ x \\ \\ \text{def contr } (A:\ U) \ (a\ b:\ A) \ (p:\ \text{Path } A \ a \ b) \\ : \ \ \text{Path } (\text{singl } A \ a) \ (a,<_>a) \ (b,p) \end{array} ``` Proof that singleton is contractible space. Implemented as $[i](p@i,[j]p@(i \land j))$. **Theorem 34.** (HoTT Dependent Eliminator). ``` def J (A: U) (a: A) (C: (x: A) -> Path A a x -> U) (d: C a (refl A a)) (x: A) : Π (p: Path A a x) : C x p ``` **Theorem 35.** (Diagonal Path Induction). ``` def D (A: U) : U := Π (x y: A), Path A x y -> U def J (A: U) (x: A) (C: D A) (d: C x x (refl A x)) (y: A) : Π (p: Path A x y), C x y p ``` ### Theorem 36. (Path Computation). ``` def trans_comp (A: U) (a: A) : Path A a (trans A A (<_> A) a) def subst_comp (A: U) (P: A -> U) (a: A) (e: P a) : Path (P a) e (subst A P a a (refl A a) e) def J_comp (A: U) (a: A) (C: (x: A) -> Path A a x -> U) (d: C a (refl A a)) : Path (C a (refl A a)) d (J A a C d a (refl A a)) ``` Note that in HoTT there is no Eta rule, otherwise Path between element would requested to be unique applying UIP at any Path level which is prohibited. UIP in HoTT is defined only as instance of n-groupoid, see the PROP type. #### 6.3 Glue Glue types defines composition structure for fibrant universes that allows partial elements to be extended to fibrant types. In other words it turns equivalences in the multidensional cubes to path spaces. Unlike ABCHFL, CCHM needn't another universe for that purpose. **Definition 49.** (Glue Formation). The Glue types take a partial family of types A that are equivalent to the base type B. These types are then "glued" onto B and the equivalence data gets packaged up into a new type. $$\mathbf{Glue}(A, \varphi, e) : U.$$ **Definition 50.** (Glue Introduction). glue $$\varphi$$ u (ouc a) : Glue A [φ =1 \mapsto (T , f)]. ``` def glue' (A : U) (\varphi : I) (u : Partial (\Sigma (T : U), equiv T A × T) \varphi) (a : A [\varphi \mapsto [(\varphi = 1) \rightarrow (u l=1).2.1.1 (u l=1).2.2]]) := glue \varphi u (ouc a) ``` **Definition 51.** (Glue Elimination). $$\mathbf{unglue}(b) : A \ [\varphi \mapsto f(b)].$$ ```
\begin{array}{lll} \operatorname{def} \ \operatorname{unglue'} \ (A : U) \ (\varphi : I) \\ & (e : \operatorname{Partial} \ (\Sigma \ (T : U) \,, \ \operatorname{equiv} \ T \ A) \ \varphi) \\ & (a : \operatorname{Glue} \ A \ \varphi \ e) \ : \ A \\ := \operatorname{unglue} \ \varphi \ e \ a \end{array} ``` **Theorem 37.** (Glue Computation). $$b =$$ glue $[\varphi \mapsto b]$ (unglue b). Theorem 38. (Glue Uniqueness). **unglue** (glue $$[\varphi \mapsto t] \ a) = a : A$$. #### 6.4 Fibration **Definition 52** (Fiber). The fiber of the map $p: E \to B$ at a point y: B is the set of all points x: E such that p(x) = y. fiber (E B: U) (p: E $$\rightarrow$$ B) (y: B): U = (x: E) * Ξ B y (p x) **Definition 53** (Fiber Bundle). The fiber bundle $F \to E \xrightarrow{p} B$ on a total space E with fiber layer F and base B is a structure (F, E, p, B), where $p : E \to B$ is a surjective map with the following property: for any point y : B there exists a neighborhood U_b for which there is a homeomorphism $$f: p^{-1}(U_b) \to U_b \times F$$ making the following diagram commute: $$p^{-1}(U_b) \xrightarrow{f} U_b \times F$$ $$\downarrow \qquad \qquad \downarrow pr_1$$ $$\downarrow \qquad \qquad \downarrow pr_1$$ **Definition 54** (Trivial Fiber Bundle). When the total space E is the cartesian product $\Sigma(B, F)$ and $p = pr_1$, then such a bundle is called trivial: $(F, \Sigma(B, F), pr_1, B)$. ``` Family (B: U): U = B \rightarrow U ``` ``` total (B: U) (F: Family B): U = Sigma\ B\ F trivial (B: U) (F: Family B): total B\ F -> B = \setminus (x:\ total\ B\ F) -> x.1 homeo (B E: U) (F: Family B) (p: E -> B) (y: B): fiber E B p y -> total B F ``` **Theorem 39** (Fiber Bundle $\equiv \Pi$). The inverse image (fiber) of the trivial bundle $(F, B \times F, pr_1, B)$ at a point y : B equals F(y). Proof sketch: ``` \begin{array}{l} F \ y = (_: \ isContr \ B) \ * \ (F \ y) \\ = (x \ y: \ B) \ * \ (_: \ \Xi \ B \ x \ y) \ * \ (F \ y) \end{array} = (z:B) * (k:Fz) * \Xi B z y = (z: E) * \Xi B z.1 y = fiber (total B F) B (trivial B F) y The equality is shown using the isoPath lemma and encode/decode functions. def Family (B : U) : U_1 := B \rightarrow U def Fibration (B : U) : U_1 := \Sigma (X : U), X \rightarrow B def encode-Pi (B : U) (F : B \rightarrow U) (y : B) : fiber (Sigma B F) B (pr₁ B F) y \rightarrow F y := \ (x : fiber (Sigma B F) B (pr_1 B F) y), subst B F x.1.1 y (<i> x.2 @ -i) x.1.2 def decode-Pi (B : U) (F : B \rightarrow U) (y : B) : F y \rightarrow fiber (Sigma B F) B (pr_1 B F) y := \ (x : F y), ((y, x), idp B y) \label{eq:def_decode} \begin{array}{lll} \text{def decode-encode-Pi } (B \ : \ U) & (F \ : \ B \rightarrow U) & (y \ : \ B) & (x \ : \ F \ y) \end{array} : Ξ (F y) (transp (<i> F (idp B y @ i)) 0 x) x := < j > transp (< i > F y) j x ``` $\begin{array}{c} \text{def encode-decode-Pi } (B:U) \ (F:B \rightarrow U) \ (y:B) \\ (x: \text{fiber } (\text{Sigma B F}) \ B \ (\text{pr}_1 \ B \ F) \ y) \\ : \Xi \ (\text{fiber } (\text{Sigma B F}) \ B \ (\text{pr}_1 \ B \ F) \ y) \\ & ((y, \text{encode-Pi B F} \ y \ x), \text{idp B y}) \ x \end{array}$ **Definition 55.** (Fibration-1) Dependent fiber bundle derived from Ξ contractability. ``` def isFBundle1 (B: U) (p: B \rightarrow U) (F: U): U₁ := \Sigma (_: \Pi (b: B), isContr (PathP (<_>U) (p b) F)), (\Pi (x: Sigma B p), B) ``` **Definition 56.** (Fibration-2). Dependent fiber bundle derived from surjective function. ``` \begin{array}{lll} def \ isFBundle2 \ (B:\ U) \ (p:\ B \rightarrow U) \ (F:\ U)\colon \ U \\ := \Sigma \ (v:\ U) \ (w:\ surjective\ v\ B)\,, \ (\Pi \ (x:\ v)\,,\ PathP \ (<_>U) \ (p \ (w.1\ x)) \ F) \end{array} ``` **Definition 57.** (Fibration-3). Non-dependent fiber bundle derived from fiber truncation. **Definition 58.** (Fibration-4). Non-dependen fiber bundle derived as pullback square. #### 6.5 Equivalence **Definition 59.** (Fiberwise Equivalence). Fiberwise equivalence \simeq or Equiv of function $f: A \to B$ represents internal equality of types A and B in the universe U as contractible fibers of f over base B. $$A \simeq B: U =_{def} \mathbf{Equiv}(A,B): U =_{def}$$ $$\sum_{f:A \to B} \prod_{y:B} \sum_{x:\Sigma_{x:A}y =_B f(x)} \sum_{w:\Sigma_{x:A}y =_B f(x)} \sum_{w:\Sigma_{x:A}y =_B f(x)} \sum_{x = \sum_{x:A}y \sum_{x = A}y =_$$ **Definition 60.** (Fiberwise Reflection). There is a fiberwise instance id_{\simeq} of $A \simeq A$ that is derived as (id(A), isContrSingl(A)): $$id_{\sim} : \mathbf{Equiv}(A, A).$$ ``` \begin{array}{l} \text{def singl } (A:\ U)\ (a:\ A):\ U\\ :=\ \Sigma\ (x:\ A)\ ,\ \Xi\ A\ a\ x\\ \\ \text{def contr } (A:\ U)\ (a\ b:\ A)\ (p:\ \Xi\ A\ a\ b)\\ :\ \Xi\ (\sin gl\ A\ a)\ (eta\ A\ a)\ (b,\ p)\\ :=\ <i>>(p\ @\ i\ ,\ \<\ ;j>p\ @\ i\ /\backslash\ j)\\ \\ \text{def isContrSingl } (A:\ U)\ (a:\ A):\ isContr\ (singl\ A\ a)\\ :=\ ((a,idp\ A\ a),(\backslash(z:singl\ A\ a),contr\ A\ a\ z.1\ z.2))\\ \\ \text{def idEquiv } (A:\ U):\ equiv\ A\ A\\ :=\ (\backslash(a:A)\ ->\ a,\ isContrSingl\ A)\\ \end{array} ``` **Theorem 40.** (Fiberwise Induction Principle). For any $P:A\to B\to A\simeq B\to U$ and it's evidence d at $(B,B,\mathrm{id}_{\simeq}(B))$ there is a function Ind_{\simeq} . HoTT 5.8.5 $$\mathbf{Ind}_{\sim}(P,d):(p:A\simeq B)\to P(A,B,p).$$ ``` \begin{array}{c} \text{def J-equiv (A B: U)} \\ \text{ (P: Π (A B: U), equiv A $B \rightarrow U$)} \\ \text{ (d: P B B (idEquiv B))} \\ \text{ : Π (e: equiv A B), P A B e} \\ \text{ := λ (e: equiv A B),} \\ \text{ subst (single B) (\backslash (z: single B), P z.1 B z.2$)} \\ \text{ (B,idEquiv B) (A,e)} \\ \text{ (contrSinglEquiv A B e) d} \end{array} ``` ``` Theorem 41. (Fiberwise Computation of Induction Principle). (d: C A A (idEquiv A)) : E (C A A (idEquiv A)) d (ind-Equiv A A C d (idEquiv A)) Definition 61. (Surjective). isSurjective (A B: U) (f: A -> B): U = (b: B) * pTrunc (fiber A B f b) surjective (A B: U): U = (f: A \rightarrow B) * isSurjective A B f Definition 62. (Injective). isInjective ' (A B: U) (f: A -> B): U = (b: B) \rightarrow isProp (fiber A B f b) injective (A B: U): U = (f: A \rightarrow B) * isInjective A B f Definition 63. (Embedding). isEmbedding (AB: U) (f: A -> B) : U = (x y: A) \rightarrow isEquiv (\Xi A x y) (\Xi B (f x) (f y)) (cong A B f x y) embedding (AB: U): U = (f: A \rightarrow B) * isEmbedding A B f Definition 64. (Half-adjoint Equivalence). isHae (A B: U) (f: A -> B): U = (g: B \rightarrow A) * (eta_: \(\text{E}\) (id A) (o A B A g f) (idfun A)) * (eps_: \(\tilde{E}\) (o B A B f g) (idfun B)) * ((x:A) \rightarrow \Xi B (f ((eta_@ 0) x)) ((eps_@ 0) (f x))) hae (AB: U): U = (f: A \rightarrow B) * isHae A B f ``` ## 6.6 Homotopy The first higher equality we meet in homotopy theory is a notion of homotopy, where we compare two functions or two path spaces (which is sort of dependent families). The homotopy interval I = [0, 1] is the perfect foundation for definition of homotopy. **Definition 65.** (Interval). Compact interval. ``` def I : U := inductive \{ i0 \mid i1 \mid seg : i0 \equiv i1 \} ``` You can think of **I** as isomorphism of equality type, disregarding carriers on the edges. By mapping $i0, i1 : \mathbf{I}$ to x, y : A one can obtain identity or equality type from classic type theory. **Definition 66.** (Interval Split). The convertion function from I to a type of comparison is a direct eliminator of interval. The interval is also known as one of primitive higher inductive types which will be given in the next **Issue IV: Higher Inductive Types**. **Definition 67.** (Homotopy). The homotopy between two function $f, g: X \to Y$ is a continuous map of cylinder $H: X \times \mathbf{I} \to Y$ such that $$\begin{cases} H(x,0) = f(x), \\ H(x,1) = g(x). \end{cases}$$ ``` \begin{array}{l} {\rm homotopy} \ \, (X \ Y : \ U) \ \, (f \ g : \ X \longrightarrow Y) \\ {\rm (p:} \ \, (x : \ X) \longrightarrow \Xi \ Y \ \, (f \ x) \ \, (g \ x)) \\ {\rm (x:} \ \, X) : \ \, I \longrightarrow Y = pathToHtpy \ \, Y \ \, (f \ x) \ \, (g \ x) \ \, (p \ x) \end{array} ``` #### **Definition 68.** (funExt-Formation) ``` \begin{array}{lll} funext_form & (A \ B: \ U) & (f \ g: \ A \ {\longrightarrow} \ B): \ U \\ &= \Xi \ \overline{(A \ {\longrightarrow} \ B)} & f \ g \end{array} ``` #### **Definition 69.** (funExt-Introduction) #### **Definition 70.** (funExt-Elimination) ``` \begin{array}{l} happly \ (A \ B: \ U) \ (f \ g: \ A -\!\!\!> B) \ (p: \ funext_form \ A \ B \ f \ g) \ (x: \ A) \\ : \Xi \ B \ (f \ x) \ (g \ x) \\ = cong \ (A -\!\!\!> B) \ B \ (\backslash (h: \ A -\!\!\!> B) \ -\!\!\!> apply \ A \ B \ h \ x) \ f \ g \ p \end{array} ``` #### **Definition 71.** (funExt-Computation) ``` \begin{array}{l} {\rm funext_Beta} \ (A \ B: \ U) \ (f \ g: \ A -> B) \ (p: \ (x:A) \ -> \Xi \ B \ (f \ x) \ (g \ x)) \\ : \ (x:A) \ -> \Xi \ B \ (f \ x) \ (g \ x) \\ = \ \backslash (x:A) \ -> \ {\rm happly} \ A \ B \ f \ g \ (funext \ A \ B \ f \ g \ p) \ x \end{array} ``` #### **Definition 72.** (funExt-Uniqueness) ``` \begin{array}{l} {\rm funext_Eta} \ (A \ B: \ U) \ (f \ g: \ A \ {\rightarrow} \ B) \ (p: \ \Xi \ (A \ {\rightarrow} \ B) \ f \ g) \\ {\rm :} \ \Xi \ (\Xi \ (A \ {\rightarrow} \ B) \ f \ g) \ (funext \ A \ B \ f \ g \ (happly \ A \ B \ f \ g \ p)) \ p \\ {\rm =} \ refl \ (\Xi \ (A \ {\rightarrow} \ B) \ f \ g) \ p \end{array} ``` ## 6.7 Isomorphism ``` Definition 73. (iso-Formation) iso_Form (A B: U): U = isIso A B -> E U A B Definition 74. (iso-Introduction) iso_Intro (A B: U): iso_Form A B Definition 75. (iso-Elimination) iso_Elim (A B: U): E U A B -> isIso A B Definition 76. (iso-Computation) iso_Comp (A B: U) (p: E U A B) : E (E U A B) (iso_Intro A B (iso_Elim A B p)) p Definition 77. (iso-Uniqueness) iso_Uniq (A B: U) (p: isIso A B) : E (isIso A B) (iso_Elim A B (iso_Intro A B p)) p ``` #### 6.8 Univalence ``` Definition 78. (uni-Formation) univ Formation (A B: U): U = equiv A B \implies \Xi U A B Definition 79. (uni-Introduction) equivToΞ (A B: U): univ_Formation A B = \(p: equiv A B) ->
<i> Glue B [(i=0) -> (A,p), (i=1) -> (B, subst U (equiv B) B B (<_>B) (idEquiv B))] Definition 80. (uni-Elimination) pathToEquiv\ (A\ B:\ U)\ (p\colon\thinspace\Xi\ U\ A\ B)\ :\ equiv\ A\ B = subst U (equiv A) A B p (idEquiv A) Definition 81. (uni-Computation) eqToEq (A B : U) (p : \Xi U A B) : \Xi (\Xi U A B) (equivToPath A B (pathToEquiv A B p)) p = <j i> let Ai: U = p@i in Glue B [(i=0) \rightarrow (A, pathToEquiv A B p), (i=1) \rightarrow (B, pathToEquiv B B (< k > B)), (j=1) -> (p@i, pathToEquiv Ai B (<k> p @ (i \/ k)))] Definition 82. (uni-Uniqueness) transPathFun\ (A\ B\ :\ U)\ (w:\ equiv\ A\ B) : \Xi (A -> B) w.1 (pathToEquiv A B (equivToPath A B w)).1 ``` ## 6.9 Loop **Definition 83.** (Pointed Space). A pointed type (A, a) is a type A : U together with a point a : A, called its basepoint. **Definition 84.** (Loop Space). $$\Omega(A, a) =_{def} ((a =_A a), refl_A(a)).$$ **Definition 85.** (n-Loop Space). $$\begin{cases} \Omega^0(A,a) =_{def} (A,a) \\ \Omega^{n+1}(A,a) =_{def} \Omega^n(\Omega(A,a)) \end{cases}$$ ``` omega : nat \rightarrow pointed \rightarrow pointed = split zero \rightarrow idfun pointed succ n \rightarrow \((A: pointed) \rightarrow omega n (omegal A) ``` ### 6.10 Groupoid The first text about groupoid interpretation of type theory can be found in Francois Lamarche: A proposal about Foundations². Then Martin Hofmann and Thomas Streicher wrote the initial document on groupoid interpretation of type theory³. | Equality | Homotopy | ∞ -Groupoid | |--------------|------------------------|--------------------------| | reflexivity | constant path | identity morphism | | symmetry | inversion of path | inverse morphism | | transitivity | concatenation of paths | composition of mopphisms | There is a deep connection between higher-dimential groupoids in category theory and spaces in homotopy theory, equipped with some topology. The category or groupoid could be built where the objects are particular spaces or types, and morphisms are path types between these types, composition operation is a path concatenation. We can write this groupoid here recalling that it should be category with inverted morphisms. ``` PathCat (X: U): cat = (X, \ (x y:X) -> Path X x y) def isCatGroupoid (C: cat): U := \Sigma \Pi (x: C.ob), C.hom x x) (id: \Pi \ (x \ y \ z\!:\! C.\,ob\,)\,,\ C.\,hom\ x \ y \ -\!\!\!> C.\,hom\ y \ z \ -\!\!\!> C.\,hom\ x \ z\,) (c: (HomSet: \begin{array}{l} \Pi \ (x \ y \colon C.ob), \ isSet \ (C.hom \ x \ y)) \\ \Pi \ (x \ y \colon C.ob), \ C.hom \ x \ y \rightarrow C.hom \ y \ x) \end{array} (inv: (inv-left: \Pi (x y: C.ob) (p: C.hom x y), \Xi (C.hom x x) (c x y x p (inv x y p)) (id x)) (inv-right: \Pi (x y: C.ob) (p: C.hom x y), \Xi (C.hom y y) (c y x y (inv x y p) p) (id y)) (left: \Pi (x y: C.ob) (f: C.hom x y), \Xi (C.hom x y) f (c x x y (id x) f)) \Pi (x y: C.ob) (f: C.hom x y), (right: \Xi (C.hom x y) f (c x y y f (id y))) \Pi (x y z w: C.ob) (f: C.hom x y) (assoc: (g: C.hom y z) (h: C.hom z w), \Xi (C.hom x w) (c x z w (c x y z f g) h) (c \times y \times f (c \times z \times g \times h))), \star ``` ²http://www.cse.chalmers.se/~coquand/Proposal.pdf $^{^3{\}rm Martin}$ Hofmann and Thomas Streicher. The Groupoid Interpretation of Type Theory. 1996. ``` def isProp (A : U) : U := \Pi (a b : A), \Xi A a b def isSet (A : U) : U := \Pi (a b : A) (x y : \Xi A a b), \Xi (\Xi A a b) x y def isGroupoid (A : U) : U := \Pi (a b : A) (x y : \Xi A a b) (i \ j : \Xi (\Xi A a b) x y), \Xi (\Xi (\Xi A a b) x y) i j def CatGroupoid (X : U) (G : isGroupoid X) : isCatGroupoid (PathCat X) := (idp X, comp-Path X, G, sym X, {\color{blue} {\rm comp-inv-Path}^{-1}} \ X, comp-inv-Path X, comp-Path-left X, comp-Path-right X, comp-Path-assoc X,) def comp-\(\mathbb{E}\) (A : U) (a b c : A) (p : \(\mathbb{E}\) A a b) (q : \(\mathbb{E}\) A b c) : \(\mathbb{E}\) A a c := \langle i \rangle hcomp A (\partial i) (\lambda \ (\, j \ : \ I\,)\,, \ [\, (\, i \ = \ 0\,) \, \to a\,, (i = 1) \rightarrow q @ j]) (p @ i) def comp-inv-\Xi^{-1} (A : U) (a b : A) (p : \Xi A a b) : \Xi (\Xi A a a) (comp\Xi A a b a p (\langle i \rangle p @ -i)) (\langle j \rangle a) := <\!\!k\ j\!\!>\ hcomp\ A\ (\partial\ j\ \lor\ k) (\lambda \ (\, i \ : \ I\,)\,, \ [\, (\, j \ = \ 0\,) \, \to \, a\,, (j = 0) \rightarrow p @ -i \land -k, (k = 1) \rightarrow a]) (p @ j \land -k) def comp-inv-\Xi (A : U) (a b : A) (p : \Xi A a b) : \Xi (\Xi A b b) (comp-\Xi A b a b (\langle i \rangle p @ -i) p) (\langle j \rangle b) := \langle j \mid i \rangle \text{ hcomp } A (\partial i \vee j) (\lambda (k : I), [(i = 0) \rightarrow b, (j = 1) \rightarrow b, (i = 1) \rightarrow p @ j \ / k]) (p @ -i \lor j) def comp-\(\mathbb{E}\)-left (A : U) (a b : A) (p: \(\mathbb{E}\) A a b) : \Xi (\Xi A a b) p (comp\Xi A a a b (< a) p) := < j \ i > hcomp \ A \ (\partial \ i \ \vee - j \,) (\lambda (k : I), [(i = 0) \rightarrow a, (i = 1) \rightarrow p @ k, (j = 0) \rightarrow p @ i / k] a def comp-\(\mathbb{E}\)-right (A : U) (a b : A) (p: \(\mathbb{E}\) A a b) : Ξ (Ξ A a b) p (comp—Ξ A a b b p (<_> b)) := \langle j \mid i \rangle \text{ hcomp A } (\partial i \vee -j) (\lambda (k : I), [(i = 0) \rightarrow a, (i = 1) \rightarrow b, (j = 0) \rightarrow p @ i) (p @ i) ``` ``` \begin{array}{l} \text{def comp-Ξ-assoc } (A:U) \ (a\ b\ c\ d:A) \\ (f:\Xi\ A\ a\ b) \ (g:\Xi\ A\ b\ c) \ (h:\Xi\ A\ c\ d) \\ :\Xi\ (\Xi\ A\ a\ d) \ (\text{comp-Ξ-A}\ a\ c\ d\ (\text{comp-Ξ-A}\ a\ b\ c\ f\ g)\ h) \\ (\text{comp-Ξ-A}\ a\ b\ d\ f\ (\text{comp-Ξ-A}\ b\ c\ d\ g\ h)) \\ :=J\ A\ a\ (\lambda\ (a:A)\ (b:A)\ (f:\Xi\ A\ a\ b), \\ \Pi\ (c\ d:A)\ (g:\Xi\ A\ b\ c)\ (h:\Xi\ A\ c\ d), \\ \Xi\ (\Xi\ A\ a\ d)\ (\text{comp-Ξ-A}\ a\ c\ d\ (\text{comp-Ξ-A}\ a\ b\ c\ f\ g)\ h) \\ (\text{comp-Ξ-A}\ a\ c\ d\ (\text{comp-Ξ-A}\ a\ c\ d\ g\ h))) \\ (\lambda\ (c\ d:A)\ (g:\Xi\ A\ a\ c)\ (h:\Xi\ A\ c\ d), \\ (\text{comp-Ξ-A}\ a\ c\ d\ (\text{comp-Ξ-A}\ a\ c\ d\ g\ h)) \\ (\text{comp-Ξ-A}\ a\ c\ d\ (\text{comp-Ξ-A}\ a\ c\ d\ g\ h)) \\ (<\text{i>} \text{comp-Ξ-A}\ a\ c\ d\ (\text{comp-Ξ-A}\ a\ c\ d\ g\ h))) \ b\ f\ c\ d\ g\ h} \end{array} ``` ### 6.11 Homotopy Groups **Definition 86.** (n-th Homotopy Group of m-Sphere). ``` \pi_n S^m = ||\Omega^n(S^m)||_0. piS (n: nat): (m: nat) \rightarrow U = split Theorem 42. (\Omega(S^1) = \mathbb{Z}). data S1 = base \mid loop \langle i \rangle [(i=0) \rightarrow base (i=1) \rightarrow base [i=1) loopS1 : U = \Xi S1 base base encode (x:S1) (p:\Xi S1 base x) : helix x = subst S1 helix base x p zeroZ decode : (x:S1) -> helix x -> \Xi S1 base x = split base -> loopIt loop @ i -> rem @ i where p : \Xi U (Z \rightarrow loopS1) (Z \rightarrow loopS1) = <j> helix (loop1@j) -> \Xi S1 base (loop1@j) rem : PathP p loopIt loopIt = corFib1 S1 helix (\((x:S1)->= S1 base x) base loopIt loopIt loop1 (\((n:Z) \rightarrow comp \ (<\!i> \ge 1 \ loopS1 \ (oneTurn \ (loopIt \ n)) (loopIt (testIsoPath Z Z sucZ predZ sucpredZ predsucZ n @ i))) (<i>(lem1It n)@-i) []) loopS1eqZ\ :\ \Xi\ U\ Z\ loopS1 = isoPath Z loopS1 (decode base) (encode base) \operatorname{section} Z \operatorname{retract} Z ``` ## 6.12 Hopf Fibrations **Example 4.** $(S^1 \mathbb{R} \text{ Hopf Fiber}).$ **Example 5.** (S^3 $\mathbb C$ Hopf Fiber). S^3 Fibration was peeoneered by Guillaume Brunerie. **Definition 87.** (H-space). H-space over a carrier A is a tuple $$H_A = \begin{cases} A: U \\ e: A \\ \mu: A \to A \to A \\ \beta: \Pi(a:A), \mu(e,a) = a \times \mu(a,e) = a \end{cases}$$. **Theorem 43.** (Hopf Invariant). Let $\phi: S^{2n-1} \to S^n$ a continuous map. Then homotopy pushout (cofiber) of ϕ is $cofib(\phi) = S^n \bigcup_{\phi} \mathbb{D}^{2n}$ has ordinary cohomology $$H^{k}(\operatorname{cofib}(\phi), \mathbb{Z}) = \begin{cases} \mathbb{Z} & \text{for } k = n, 2n \\ 0 & \text{otherwise} \end{cases}$$ **Theorem 44.** (Four). There are fiber bundles: (S^0, S^1, p, S^1) , (S^1, S^3, p, S^2) , (S^3, S^7, p, S^4) , (S^7, S^{15}, p, S^8) . Hence for α, β generators of the cohomology groups in degree n and 2n, respectively, there exists an integer $h(\phi)$ that expresses the **cup product** square of α as a multiple of $\beta - \alpha \sqcup \alpha = h(\phi) \cdot \beta$. This integer $h(\phi)$ is called Hopf invariant of ϕ . **Theorem 45.** (Adams, Atiyah). Hopf Fibrations are only maps that have Hopf invariant 1. # Issue IV: Higher Inductive Types # Maksym Sokhatsky
i $^{\rm 1}$ National Technical University of Ukraine Igor Sikorsky Kyiv Polytechnic Institute May 4, 2019 #### Анотація CW-complexes are central to both homotopy theory and homotopy type theory (HoTT) and are encoded in cubical theorem-proving systems as higher inductive types (HIT), similar to recursive trees for (co)inductive types. We explore the basic primitives of homotopy theory, which are considered as a foundational basis in theorem-proving systems. Keywords: Homotopy Theory, Type Theory # 7 CW-Complexes CW-complexes are spaces constructed by attaching cells of various dimensions. In HoTT, they are encoded as higher inductive types (HIT), where cells are constructors for points and paths. **Definition 88.** (Cell Attachment). The attachment of an n-cell to a space X along $f: S^{n-1} \to X$ is a pushout: $$S^{n-1} \xrightarrow{f} X$$ $$\downarrow^{\iota} \qquad \qquad \downarrow^{j}$$ $$D^{n} \xrightarrow{g} X \cup_{f} D^{n}$$ Here, $\iota: S^{n-1} \hookrightarrow D^n$ is the boundary inclusion, and $X \cup_f D^n$ is the pushout that attaches an n-cell to X via f. The result depends on the homotopy class of f. **Definition 89.** (CW-Complex). A CW-complex is a space X, constructed inductively by attaching cells, with a skeletal filtration: • (-1)-skeleton: $X_{-1} = \emptyset$. • For $n \geq 0$, the *n*-skeleton X_n is obtained by attaching *n*-cells to X_{n-1} . For indices J_n and maps $\{f_j: S^{n-1} \to X_{n-1}\}_{j \in J_n}$, X_n is the pushout: $$\coprod_{j \in J_n} S^{n-1} \xrightarrow{\coprod f_j} X_{n-1}$$
$$\downarrow \coprod_{i_j} \qquad \downarrow_{i_n}$$ $$\coprod_{j \in J_n} D^n \xrightarrow{\coprod g_j} X_n$$ where $\coprod_{j\in J_n} S^{n-1}$, $\coprod_{j\in J_n} D^n$ are disjoint unions, and $i_n: X_{n-1}\hookrightarrow X_n$ is the inclusion. \bullet X is the colimit: $$\emptyset = X_{-1} \hookrightarrow X_0 \hookrightarrow X_1 \hookrightarrow \ldots \hookrightarrow X,$$ where X_n is the *n*-skeleton, and $X = \operatorname{colim}_{n \to \infty} X_n$. The sequence is the skeletal filtration. In HoTT, CW-complexes are higher inductive types (HIT) with constructors for cells and paths for attachment. #### 7.1 Introduction: Countable Constructors Some HITs require an infinite number of constructors for spaces, such as Eilenberg-MacLane spaces or the infinite sphere S^{∞} . ``` \begin{array}{lll} def \ S^{\infty} \ : \ U \\ := \ inductive \ \left\{ \begin{array}{ll} base \\ | \ loop \ (n \colon \, \mathbb{N}) \ : \ base \ \equiv \ base \\ \end{array} \right. \end{array} ``` Challenges include type checking, computation, and expressiveness. Agda Cubical uses cubical primitives to handle HITs, supporting infinite constructors via HITs indexed by natural numbers, as colimits. ## 7.2 Motivation: Higher Inductive Types HITs in HoTT enable direct encoding of topological spaces, such as CW-complexes. In homotopy theory, spaces are constructed by attaching cells via attaching maps. HoTT views types as spaces, elements as points, and equalities as paths, making HITs a natural choice. Standard inductive types cannot capture higher homotopies, but HITs allow constructors for points and paths. For example, the circle S^1 (Definition 2) has a base point and a loop, encoding its fundamental group $\mathbb Z$. HITs avoid the use of multiple quotient spaces, preserving the synthetic nature of HoTT. In cubical type theory, paths are intervals (e.g., < i >) with computational content, unlike propositional equalities, enabling efficient type checking in tools such as Agda Cubical. #### 7.3 Metatheory: Cohesive Topoi #### 7.3.1 Geometric Proofs $$\Re\dashv\Im\dashv\&$$ For differential geometry, type theory incorporates primitive axioms of categorical meta-theoretical models of three Schreiber-Shulman functors: infinitesimal neighborhood (\Im), reduced modality (\Re), and infinitesimal discrete neighborhood (&). - 7.3.2 Flat Proofs - 7.3.3 Sharp Proofs - 7.3.4 Bose Proofs - 7.3.5 Fermi Proofs - 7.3.6 Linear Proofs $$\otimes \dashv x \dashv \multimap$$ For engineering applications (e.g., Milner's π -calculus, quantum computing) and linear type theory, type theory embeds linear proofs based on the adjunction of the tensor and linear function spaces: $(A \otimes B) \multimap A \simeq A \multimap (B \multimap C)$, represented in a symmetric monoidal category **D** for a functor [A, B] as: $\mathbf{D}(A \otimes B, C) \simeq \mathbf{D}(A, [B, C])$. # 8 Higher Inductive Types CW-complexes are central to HoTT and appear in cubical type checkers as HITs. Unlike inductive types (recursive trees), HITs encode CW-complexes, capturing points (0-cells) and higher paths (n-cells). The definition of an HIT specifies a CW-complex through cubical composition, an initial algebra in the cubical model. #### 8.1 Suspension The suspension ΣA of a type A is a higher inductive type that constructs a new type by adding two points, called poles, and paths connecting each point of A to these poles. It is a fundamental construction in homotopy theory, often used to shift homotopy groups, e.g., obtaining S^{n+1} from S^n . **Definition 90.** (Formation). For any type $A : \mathcal{U}$, there exists a suspension type $\Sigma A : \mathcal{U}$. **Definition 91.** (Constructors). For a type $A : \mathcal{U}$, the suspension $\Sigma A : \mathcal{U}$ is generated by the following higher inductive compositional structure: $$\Sigma := \begin{cases} \text{north} \\ \text{south} \\ \text{merid} : (a:A) \to \text{north} \equiv \text{south} \end{cases}$$ ``` \begin{array}{lll} \text{def } \Sigma \ (A \colon U) \ : \ U \\ := \ inductive \ \left\{ \begin{array}{ll} \text{north} \\ \mid \ \text{south} \\ \mid \ \text{merid} \ (a \colon A) \ : \ north \ \equiv \ south \end{array} \right. \end{array} ``` **Theorem 46.** (Elimination). For a family of types $B: \Sigma A \to \mathcal{U}$, points n: B(north), s: B(south), and a family of dependent paths ``` m: \Pi(a:A), \text{PathOver}(B, \text{merid}(a), n, s), ``` there exists a dependent map $\operatorname{Ind}_{\Sigma A}:(x:\Sigma A)\to B(x),$ such that: $$\begin{cases} \operatorname{Ind}_{\Sigma A}(\operatorname{north}) = n \\ \operatorname{Ind}_{\Sigma A}(\operatorname{south}) = s \\ \operatorname{Ind}_{\Sigma A}(\operatorname{merid}(a, i)) = m(a, i) \end{cases}$$ ``` def PathOver (B: \Sigma A \rightarrow U) (a: A) (n: B north) (s: B south) : U := PathP (\lambda i , B (merid a @ i)) n s ``` Theorem 47. (Computation). ``` \operatorname{Ind}_{\Sigma} A(\operatorname{north}) = n \operatorname{Ind}_{\Sigma} A(\operatorname{south}) = s \operatorname{Ind}_{\Sigma} A(\operatorname{merid}(a, i)) = m(a, i) ``` **Theorem 48.** (Uniqueness). Any two maps $h_1, h_2 : (x : \Sigma A) \to B(x)$ are homotopic if they agree on north, south, and merid, i.e., if $h_1(\text{north}) = h_2(\text{north})$, $h_1(\text{south}) = h_2(\text{south})$, and $h_1(\text{merid } a) = h_2(\text{merid } a)$ for all a : A. #### 8.2 Pushout The pushout (amalgamation) is a higher inductive type that constructs a type by gluing two types A and B along a common type C via maps $f:C\to A$ and $g:C\to B$. It is a fundamental construction in homotopy theory, used to model cell attachment and cofibrant objects, generalizing the topological notion of a pushout. **Definition 92.** (Formation). For types $A, B, C : \mathcal{U}$ and maps $f : C \to A$, $g : C \to B$, there exists a pushout $\sqcup (A, B, C, f, g) : \mathcal{U}$. **Definition 93.** (Constructors). The pushout is generated by the following higher inductive compositional structure: $$\sqcup := \begin{cases} \operatorname{po}_1 : A \to \sqcup (A, B, C, f, g) \\ \operatorname{po}_2 : B \to \sqcup (A, B, C, f, g) \\ \operatorname{po}_3 : (c : C) \to \operatorname{po}_1(f(c)) \equiv \operatorname{po}_2(g(c)) \end{cases}$$ **Theorem 49.** (Elimination). For a type $D: \mathcal{U}$, maps $u: A \to D$, $v: B \to D$, and a family of paths $p: (c: C) \to u(f(c)) \equiv v(g(c))$, there exists a map $\operatorname{Ind}_{\sqcup} : \sqcup (A, B, C, f, g) \to D$, such that: $$\begin{cases} \operatorname{Ind}_{\square}(\operatorname{po}_{1}(a)) = u(a) \\ \operatorname{Ind}_{\square}(\operatorname{po}_{2}(b)) = v(b) \\ \operatorname{Ind}_{\square}(\operatorname{po}_{3}(c,i)) = p(c,i) \end{cases}$$ **Theorem 50.** (Computation). For $x: \sqcup (A, B, C, f, g)$, $$\begin{cases} \operatorname{Ind}_{\square}(\operatorname{po}_{1}(a)) \equiv u(a) \\ \operatorname{Ind}_{\square}(\operatorname{po}_{2}(b)) \equiv v(b) \\ \operatorname{Ind}_{\square}(\operatorname{po}_{3}(c,i)) \equiv p(c,i) \end{cases}$$ **Theorem 51.** (Uniqueness). Any two maps $u, v : \sqcup (A, B, C, f, g) \to D$ are homotopic if they agree on po_1 , po_2 , and po_3 , i.e., if $u(\operatorname{po}_1(a)) = v(\operatorname{po}_1(a))$ for all a : A, $u(\operatorname{po}_2(b)) = v(\operatorname{po}_2(b))$ for all b : B, and $u(\operatorname{po}_3(c)) = v(\operatorname{po}_3(c))$ for all c : C. **Example 6.** (Cell Attachment) The pushout models the attachment of an n-cell to a space X. Given $f: S^{n-1} \to X$ and inclusion $g: S^{n-1} \to D^n$, the pushout $\sqcup (X, D^n, S^{n-1}, f, g)$ is the space $X \cup_f D^n$, attaching an n-disk to X along f. $$S^{n-1} \xrightarrow{f} X$$ $$\downarrow^g \qquad \qquad \downarrow$$ $$D^n \xrightarrow{} X \cup_f D^n$$ #### 8.3 Spheres Spheres are higher inductive types with higher-dimensional paths, representing fundamental topological spaces. **Definition 94.** (Pointed n-Spheres) The *n*-sphere S^n is defined recursively as a type in the universe \mathcal{U} using general recursion over dimensions: $$\mathbb{S}^n := \begin{cases} \text{point} : \mathbb{S}^n, \\ \text{surface} : < i_1, \dots i_n > [\ (i_1 = 0) \to \text{point}, (i_1 = 1) \to \text{point}, \ \dots \\ (i_n = 0) \to \text{point}, (i_n = 1) \to \text{point} \] \end{cases}$$ **Definition 95.** (n-Spheres via Suspension) The n-sphere S^n is defined recursively as a type in the universe \mathcal{U} using general recursion over natural numbers \mathbb{N} . For each $n \in \mathbb{N}$, the type $S^n : \mathcal{U}$ is defined as: $$\mathbb{S}^n := \begin{cases} S^0 = \mathbf{2}, \\ S^{n+1} = \Sigma(S^n). \end{cases}$$ $\mathsf{def} \ \mathsf{sphere} \ : \ \mathbb{N} \ \to \ \mathsf{U} \ := \ \mathbb{N}\text{-iter} \ \mathsf{U} \ \mathbf{2} \ \Sigma$ This iterative definition applies the suspension functor Σ to the base type **2** (0-sphere) n times to obtain S^n . **Example 7.** (Sphere as CW-Complex) The n-sphere S^n can be constructed as a CW-complex with one 0-cell and one n-cell: $$\begin{cases} X_0 = \{\text{base}\}, \text{ one point} \\ X_k = X_0 \text{ for } 0 < k < n, \text{ no additional cells} \\ X_n : \text{Attachment of an } n\text{-cell to } X_{n-1} = \{\text{base}\} \text{ along } f : S^{n-1} \to \{\text{base}\} \end{cases}$$ The constructor cell attaches the boundary of the n-cell to the base point, yielding the type S^n . ## 8.4 Hub and Spokes The hub and spokes construction \odot defines an *n*-truncation, ensuring that the type has no non-trivial homotopy groups above dimension n. It models the type as a CW-complex with a hub (central point) and spokes (paths to points). **Definition 96.** (Formation). For types $S, A : \mathcal{U}$, there exists a hub and spokes type $\odot (S, A) : \mathcal{U}$. **Definition 97.** (Constructors). The hub and spokes type is freely generated by the following higher
inductive compositional structure: $$\odot := \begin{cases} \text{base} : A \to \odot (S, A) \\ \text{hub} : (S \to \odot (S, A)) \to \odot (S, A) \\ \text{spoke} : (f : S \to \odot (S, A)) \to (s : S) \to \text{hub}(f) \equiv f(s) \end{cases}$$ ``` \begin{array}{lll} def \ \odot \ (S \ A: \ U) \ : \ U \\ := \ inductive \ \left\{ \begin{array}{lll} base \ (x: \ A) \\ & | \ hub \ (f: \ S \ -> \ \odot \ S \ A) \\ & | \ spoke \ (f: \ S \ -> \ \odot \ S \ A) \ (s:S) \ : \ hub \ f \ \equiv \ f \ s \end{array} \right. \end{array} ``` **Theorem 52.** (Elimination). For a family of types $P: \operatorname{HubSpokes} SA \to \mathcal{U}$, maps phase : $(x:A) \to P(\operatorname{base} x)$, phub : $(f:S \to \operatorname{HubSpokes} SA) \to P(\operatorname{hub} f)$, and a family of paths pspoke : $(f:S \to \operatorname{HubSpokes} SA) \to (s:S) \to \operatorname{PathP}(\langle i>P(\operatorname{spoke} fs@i)) (\operatorname{phub} f) (P(fs))$, there exists a map hubSpokesInd : $(z:\operatorname{HubSpokes} SA) \to P(z)$, such that: $$\begin{cases} \operatorname{Ind}_{\odot}\left(\operatorname{base}x\right) = \operatorname{pbase}x\\ \operatorname{Ind}_{\odot}\left(\operatorname{hub}f\right) = \operatorname{phub}f\\ \operatorname{Ind}_{\odot}\left(\operatorname{spoke}fs@i\right) = \operatorname{pspoke}fs@i\end{cases}$$ #### 8.5 Truncation #### **Set Truncation** **Definition 98.** (Formation). Set truncation (0-truncation), denoted $||A||_0$, ensures that the type is a set, with homotopy groups vanishing above dimension 0. **Definition 99.** (Constructors). For $A : \mathcal{U}$, $||A||_0 : \mathcal{U}$ is defined by the following higher inductive compositional structure: $$\|_\|_0 := \begin{cases} \operatorname{inc}: A \to \|A\|_0 \\ \operatorname{squash}: (a, b: \|A\|_0) \to (p, q: a \equiv b) \to p \equiv q \end{cases}$$ **Theorem 53.** (Elimination $||A||_0$) For a set $B : \mathcal{U}$ (i.e., $\mathrm{isSet}(B)$), and a map $f : A \to B$, there exists $\mathrm{setTruncRec} : ||A||_0 \to B$, such that $\mathrm{Ind}_{||A||_0}(\mathrm{inc}(a)) = f(a)$. #### **Groupoid Truncation** **Definition 100.** (Formation). Groupoid truncation (1-truncation), denoted $||A||_1$, ensures that the type is a 1-groupoid, with homotopy groups vanishing above dimension 1. **Definition 101.** (Constructors). For $A : \mathcal{U}$, $||A||_1 : \mathcal{U}$ is defined by the following higher inductive compositional structure: $$\|_{-}\|_{1} := \begin{cases} \text{inc} : A \to \|A\|_{1} \\ \text{squash} : (a, b : \|A\|_{1}) \to (p, q : a \equiv b) \to (r, s : p \equiv q) \to r \equiv s \end{cases}$$ **Theorem 54.** (Elimination $||A||_1$) For a 1-groupoid $B : \mathcal{U}$ (i.e., isGroupoid(B)), and a map $f : A \to B$, there exists $\operatorname{Ind}_{||A||_1} : ||A||_1 \to B$, such that $\operatorname{Ind}_{||A||_1}(\operatorname{inc}(a)) = f(a)$. ## 8.6 Quotients #### Set Quotient Spaces Quotient spaces are a powerful computational tool in type theory, embedded in the core of Lean. **Definition 102.** (Formation). Set quotient spaces construct a type A, quotiented by a relation $R: A \to A \to \mathcal{U}$, ensuring that the result is a set. **Definition 103.** (Constructors). For a type $A:\mathcal{U}$ and a relation $R:A\to A\to \mathcal{U}$, the set quotient space $A/R:\mathcal{U}$ is freely generated by the following higher inductive compositional structure: $$A/R := \begin{cases} \operatorname{quot} : A \to A/R \\ \operatorname{ident} : (a, b : A) \to R(a, b) \to \operatorname{quot}(a) \equiv \operatorname{quot}(b) \\ \operatorname{trunc} : (a, b : A/R) \to (p, q : a \equiv b) \to p \equiv q \end{cases}$$ **Theorem 55.** (Elimination). For a family of types $B: A/R \to \mathcal{U}$ with isSet(Bx), and maps $f: (x:A) \to B(\operatorname{quot}(x)), g: (a,b:A) \to (r:R(a,b)) \to \operatorname{PathP}(< i > B(\operatorname{ident}(a,b,r) @ i))(f(a))(f(b))$, there exists $\operatorname{Ind}_{A/R}: \Pi(x:A/R), B(x)$, such that $\operatorname{Ind}_{A/R}(\operatorname{quot}(a)) = f(a)$. #### **Groupoid Quotient Spaces** **Definition 104.** (Formation). Groupoid quotient spaces extend set quotient spaces to produce a 1-groupoid, including constructors for higher paths. Groupoid quotient spaces construct a type A, quotiented by a relation $R: A \to A \to \mathcal{U}$, ensuring that the result is a groupoid. **Definition 105.** (Constructors). For a type $A:\mathcal{U}$ and a relation $R:A\to A\to \mathcal{U}$, the groupoid quotient space $A//R:\mathcal{U}$ includes constructors for points, paths, and higher paths, ensuring a 1-groupoid structure. ## 8.7 Wedge The wedge of two pointed types A and B, denoted $A \vee B$, is a higher inductive type representing the union of A and B with identified base points. Topologically, it corresponds to $A \times \{y_0\} \cup \{x_0\} \times B$, where x_0 and y_0 are the base points of A and B, respectively. **Definition 106.** (Formation). For pointed types A, B: pointed, the wedge $A \vee B : \mathcal{U}$. **Definition 107.** (Constructors). The wedge is generated by the following higher inductive compositional structure: $$\forall := \begin{cases} \text{winl} : A.1 \to A \lor B \\ \text{winr} : B.1 \to A \lor B \\ \text{wglue} : \text{winl}(A.2) \equiv \text{winr}(B.2) \end{cases}$$ ``` \begin{array}{lll} \text{def } \lor \text{ (A : pointed) } & \text{(B : pointed) : U} \\ := & \text{inductive } \{ & \text{winl } (a : A.1) \\ & | & \text{winr } (b : B.1) \\ & | & \text{wglue : winl} (A.2) \equiv \text{winr} (B.2) \\ & \} \end{array} ``` **Theorem 56.** (Elimination). For a type $P: A \vee B\mathcal{U}$, maps $f: A.1 \to C$, $g: B.1 \to C$, and a path p: PathOverlue(P, f(A.2), g(B.2)), there exists a map $\mathrm{Ind}_{\vee}: A \vee B \to C$, such that: $$\begin{cases} \operatorname{Ind}(\operatorname{winl}(a)) = f(a) \\ \operatorname{Ind}(\operatorname{winr}(b)) = g(b) \\ \operatorname{Ind}(\operatorname{wglue}(x)) = p(x) \end{cases}$$ **Theorem 57.** (Computation). For z: Wedge AB, $$\begin{cases} \operatorname{Ind}_{\vee}(\operatorname{winl} a) \equiv f(a) \\ \operatorname{Ind}_{\vee}(\operatorname{winr} b) \equiv g(b) \\ \operatorname{Ind}_{\vee}(\operatorname{wglue} @ x) \equiv p @ x \end{cases}$$ **Theorem 58.** (Uniqueness). Any two maps h_1, h_2 : Wedge $AB \to C$ are homotopic if they agree on winl, winr, and wglue, i.e., if $h_1(\text{winl } a) = h_2(\text{winl } a)$ for all a: A.1, $h_1(\text{winr } b) = h_2(\text{winr } b)$ for all b: B.1, and $h_1(\text{wglue}) = h_2(\text{wglue})$. #### 8.8 Smash Product The smash product of two pointed types A and B, denoted $A \wedge B$, is a higher inductive type that quotients the product $A \times B$ by the pushout $A \sqcup B$. It represents the space $A \times B/(A \times \{y_0\} \cup \{x_0\} \times B)$, collapsing the wedge to a single point. **Definition 108.** (Formation). For pointed types A, B: pointed, the smash product $A \wedge B : \mathcal{U}$. **Definition 109.** (Constructors). The smash product is generated by the following higher inductive compositional structure: ``` A \wedge B := \begin{cases} \text{basel} : A \wedge B \\ \text{baser} : A \wedge B \end{cases}\text{proj}(x : A.1)(y : B.1) : A \wedge B \\ \text{gluel}(a : A.2) : \text{proj}(a, B.2) \equiv \text{basel} \\ \text{gluer}(b : B.2) : \text{proj}(A.2, b) \equiv \text{baser} \end{cases} ``` **Theorem 59.** (Elimination). For a family of types $P: \text{Smash } AB \to \mathcal{U}$, points pbasel: P(basel), pbaser: P(baser), maps pproj: $(x:A.1) \to (y:B.1) \to P(\text{proj } xy)$, and a family of paths pgluel: $(a:A.1) \to \text{pproj}(a,B.2) \equiv \text{pbasel}$, pgluer: $(b:B.1) \to \text{pproj}(A.2,b) \equiv \text{pbaser}$, there exists a map $\text{Ind}_{\wedge}: (z:A \land B) \to P(z)$, such that: ``` \begin{cases} \operatorname{Ind}_{\wedge} (\operatorname{basel}) = \operatorname{pbasel} \\ \operatorname{Ind}_{\wedge} (\operatorname{baser}) = \operatorname{pbaser} \\ \operatorname{Ind}_{\wedge} (\operatorname{proj} x \, y) = \operatorname{pproj} x \, y \\ \operatorname{Ind}_{\wedge} (\operatorname{gluel} a @ i) = \operatorname{pgluel} a @ i \\ \operatorname{Ind}_{\wedge} (\operatorname{gluer} b @ i) = \operatorname{pgluer} b @ i \end{cases} ``` **Theorem 60.** (Computation). For a family of types $P: A \wedge B \to \mathcal{U}$, points pbasel: P(basel), pbaser: P(baser), map pproj: $(x:A.1) \to (y:B.1) \to P(\text{proj}\,x\,y)$, and families of paths pgluel: $(a:A.1) \to \text{PathP}\,(< i > P(\text{gluel}\,a\,@\,i))$ (pproj $\,a\,B.2$) pbasel, pgluer: $(b:B.1) \to \text{PathP}\,(< i > P(\text{gluer}\,b\,@\,i))$ (pproj $\,A.2\,b$) pbaser, the map $\text{Ind}_{\wedge}: (z:A \wedge B) \to P(z)$ satisfies all equations for all variants of the predicate P: $\begin{cases} \operatorname{Ind}_{\wedge} \left(\operatorname{basel} \right) \equiv \operatorname{pbasel} \\ \operatorname{Ind}_{\wedge} \left(\operatorname{baser} \right) \equiv \operatorname{pbaser} \\ \operatorname{Ind}_{\wedge} \left(\operatorname{proj} x \, y \right) \equiv \operatorname{pproj} x \, y \\ \operatorname{Ind}_{\wedge} \left(\operatorname{gluel} a @ i \right) \equiv \operatorname{pgluel} a @ i \\ \operatorname{Ind}_{\wedge} \left(\operatorname{gluer} b @ i \right) \equiv \operatorname{pgluer} b @ i \end{cases}$ **Theorem 61.** (Uniqueness). For a family of types $P: A \wedge B \to \mathcal{U}$, and maps $h_1, h_2: (z: A \wedge B) \to P(z)$, if there exist paths $e_{\text{basel}}: h_1(\text{basel}) \equiv h_2(\text{basel}), \ e_{\text{baser}}: h_1(\text{baser}) \equiv h_2(\text{baser}), \ e_{\text{proj}}: (x: A.1) \to (y: B.1) \to h_1(\text{proj} x y) \equiv h_2(\text{proj} x y), \ e_{\text{gluel}}: (a: A.1) \to \text{PathP}(\langle i > h_1(\text{gluel} a @ i)) \equiv h_2(\text{gluel} a @ i)) (e_{\text{proj}} a B.2) e_{\text{basel}}, e_{\text{gluer}}: (b: B.1) \to \text{PathP}(\langle i > h_1(\text{gluer} b @ i)) \equiv h_2(\text{gluer} b @ i))
(e_{\text{proj}} A.2 b) e_{\text{baser}}, \text{ then } h_1 \equiv h_2, \text{ i.e., there exists a path } (z: A \wedge B) \to h_1(z) \equiv h_2(z).$ ### 8.9 Join The join of two types A and B, denoted $A \vee B$, is a higher inductive type that constructs a type by joining each point of A to each point of B via a path. Topologically, it corresponds to the join of spaces, forming a space that interpolates between A and B. **Definition 110.** (Formation). For types $A, B : \mathcal{U}$, the join $A * B : \mathcal{U}$. **Definition 111.** (Constructors). The join is generated by the following higher inductive compositional structure: $$A \vee B := \begin{cases} \text{joinl} : A \to A \vee B \\ \text{joinr} : B \to A \vee B \\ \text{join}(a : A)(b : B) : \text{joinl}(a) \equiv \text{joinr}(b) \end{cases}$$ **Theorem 62.** (Elimination). For a type $C: \mathcal{U}$, maps $f: A \to C$, $g: B \to C$, and a family of paths $h: (a:A) \to (b:B) \to f(a) \equiv g(b)$, there exists a map $\operatorname{Ind}_{\vee}: A \vee B \to C$, such that: $$\begin{cases} \operatorname{Ind}_{\vee}(\operatorname{joinl}(a)) = f(a) \\ \operatorname{Ind}_{\vee}(\operatorname{joinr}(b)) = g(b) \\ \operatorname{Ind}_{\vee}(\operatorname{join}(a, b, i)) = h(a, b, i) \end{cases}$$ ``` \begin{array}{l} \text{def Ind}_{\vee} \ (A \ B \ C \ : \ U) \ (f \ : A \ {\rightarrow} \ C) \ (g \ : B \ {\rightarrow} \ C) \\ \ (h \ : (a \ : A) \ {\rightarrow} \ (b \ : B) \ {\rightarrow} \ Path \ C \ (f \ a) \ (g \ b)) \\ \ : A \lor B \ {\rightarrow} \ C \\ \ := \ split \ \{ \ joinl \ a \ {\rightarrow} \ f \ a \\ \ | \ joinr \ b \ {\rightarrow} \ g \ b \\ \ | \ join \ a \ b \ @ \ i \ {\rightarrow} \ h \ a \ b \ @ \ i \\ \ \} \end{array} ``` **Theorem 63.** (Computation). For all $z : A \vee B$, and predicate P, the rules of Ind \vee hold for all parameters of the predicate P. **Theorem 64.** (Uniqueness). Any two maps $h_1, h_2 : A \vee B \to C$ are homotopic if they agree on joinl, joinr, and join. ### 8.10 Colimit Colimits construct the limit of a sequence of types, connected by maps, e.g., propositional truncations. **Definition 112.** (Colimit) For a sequence of types $A : \text{nat} \to \mathcal{U}$ and maps $f : (n : \mathbb{N}) \to An \to A(\text{succ}(n))$, the colimit type $\text{colimit}(A, f) : \mathcal{U}$. $$\operatorname{colim} := \begin{cases} \operatorname{ix} : (n : \operatorname{nat}) \to An \to \operatorname{colimit}(A, f) \\ \operatorname{gx} : (n : \operatorname{nat}) \to (a : A(n)) \to \operatorname{ix}(\operatorname{succ}(n), f(n, a)) \equiv \operatorname{ix}(n, a) \end{cases}$$ **Theorem 65.** (Elimination colimit) For a type P: colimit $Af \to \mathcal{U}$, with $p:(n:\text{nat}) \to (x:An) \to P(\text{ix}(n,x))$ and $q:(n:\text{nat}) \to (a:An) \to PathP(\langle i \rangle P(\text{gx}(n,a)@i))(p(\text{succ }n)(fna))(pna)$, there exists $i:\Pi_{x:\text{colimit }Af}P(x)$, such that i(ix(n,x)) = pnx. ## 8.11 Coequalizers #### Coequalizer The coequalizer of two maps $f, g: A \to B$ is a higher inductive type (HIT) that constructs a type consisting of elements in B, where f and g agree, along with paths ensuring this equality. It is a fundamental construction in homotopy theory, capturing the subspace of B where f(a) = g(a) for a: A. **Definition 113.** (Formation). For types $A, B : \mathcal{U}$ and maps $f, g : A \to B$, the coequalizer coeq $ABfg : \mathcal{U}$. **Definition 114.** (Constructors). The coequalizer is generated by the following higher inductive compositional structure: $$Coeq := \begin{cases} inC : B \to Coeq(A, B, f, g) \\ glueC : (a : A) \to inC(f(a)) \equiv inC(g(a)) \end{cases}$$ ``` \begin{array}{lll} \text{def Coeq (A B: U) (f g: A -> B) : U} \\ := & \text{inductive } \{ & \text{inC (b: B)} \\ & | & \text{glueC (a: A) : inC (f a)} \equiv & \text{inC (g a)} \\ & \} \end{array} ``` **Theorem 66.** (Elimination). For a type $C: \mathcal{U}$, map $h: B \to C$, and a family of paths $y: (x:A) \to \operatorname{Path}_C(h(fx), h(gx))$, there exists a map coequRec: coeq $ABfg \to C$, such that: $$\begin{cases} \operatorname{coequRec}(\operatorname{inC}(x)) = h(x) \\ \operatorname{coequRec}(\operatorname{glueC}(x,i)) = y(x,i) \end{cases}$$ ``` \begin{array}{l} \text{def coequRec (A B C : U) (f g : A -> B) (h: B -> C)} \\ \text{(y: (x : A) -> Path C (h (f x)) (h (g x)))} \\ \text{: (z : coeq A B f g) -> C} \\ \text{:= split { inC x -> h x | glueC x @ i -> y x @ i }} \end{array} ``` **Theorem 67.** (Computation). For z : coeq ABfg, $$\begin{cases} \text{coequRec(inC } x) \equiv h(x) \\ \text{coequRec(glueC } x @ i) \equiv y(x) @ i \end{cases}$$ **Theorem 68.** (Uniqueness). Any two maps h_1, h_2 : coeq $ABfg \to C$ are homotopic if they agree on inC and glueC, i.e., if $h_1(\text{inC }x) = h_2(\text{inC }x)$ for all x : B and $h_1(\text{glueC }a) = h_2(\text{glueC }a)$ for all a : A. **Example 8.** (Coequalizer as Subspace) The coequalizer coeq ABfg represents the subspace of B, where f(a) = g(a). For example, if $A = B = \mathbb{R}$ and $f(x) = x^2$, g(x) = x, the coequalizer captures the points where $x^2 = x$, i.e., $\{0, 1\}$. #### Path Coequalizer The path coequalizer is a higher inductive type that generalizes the coequalizer to handle pairs of paths in B. Given a map $p:A\to (b_1,b_2:B)\times (\operatorname{Path}_B(b_1,b_2))\times (\operatorname{Path}_B(b_1,b_2))$, it constructs a type where elements of A generate pairs of paths between points in B, with paths connecting the endpoints of these paths. **Definition 115.** (Formation). For types $A, B : \mathcal{U}$ and a map $p : A \to (b_1, b_2 : B) \times (b_1 \equiv b_2) \times (b_1 \equiv b_2)$, there exists a path coequalizer $\text{Coeq}_{\equiv}(A, B, p) : \mathcal{U}$. **Definition 116.** (Constructors). The path coequalizer is generated by the following higher inductive compositional structure: $$\operatorname{Coequ}_{\equiv} := \begin{cases} \operatorname{inP} : B \to \operatorname{Coeq}_{\equiv}(A, B, p) \\ \operatorname{glueP} : (a : A) \to \operatorname{inP}(p(a).2.2.1@0) \equiv \operatorname{inP}(p(a).2.2.2@1) \end{cases}$$ **Theorem 69.** (Elimination). For a type $C: \mathcal{U}$, map $h: B \to C$, and a family of paths $y: (a:A) \to h(p(a).2.2.1@0) \equiv h(p(a).2.2.2@1)$, there exists a map Ind-Coequ₌: Coeq₌ $(A, B, p) \to C$, such that: $$\begin{cases} \text{coequPRec}(\text{inP}(b)) = h(b) \\ \text{coequPRec}(\text{glueP}(a,i)) = y(a,i) \end{cases}$$ ``` \begin{array}{l} \text{def Ind-Coequ}_{\equiv} \ (A \ B \ C \ : \ U) \\ (p : A \to \Sigma \ (b1 \ b2 : B) \ (x: \ Path \ B \ b1 \ b2), \ Path \ B \ b1 \ b2) \\ (h: B \to C) \ (y: \ (a : A) \to Path \ C \ (h \ (((p \ a).2.2.1) \ @ \ 0)) \ (h \ (((p \ a).2.2.2) \ @ \ 1))) \\ : \ (z : coeqP \ A \ B \ p) \to C \\ := \ split \ \{ \ inP \ b \to h \ b \ | \ glueP \ a \ @ \ i \ -> \ y \ a \ @ \ i \ \} \end{array} ``` **Theorem 70.** (Computation). For z : coeqP ABp, $$\begin{cases} \operatorname{coequPRec}(\operatorname{inP} \, b) \equiv h(b) \\ \operatorname{coequPRec}(\operatorname{glueP} \, a \, @ \, i) \equiv y(a) \, @ \, i \end{cases}$$ **Theorem 71.** (Uniqueness). Any two maps $h_1, h_2 : \text{coeqP } ABp \to C$ are homotopic if they agree on inP and glueP, i.e., if $h_1(\text{inP } b) = h_2(\text{inP } b)$ for all b : B and $h_1(\text{glueP } a) = h_2(\text{glueP } a)$ for all a : A. ## 8.12 K(G,n) Eilenberg-MacLane spaces K(G, n) have a single non-trivial homotopy group $\pi_n(K(G, n)) = G$. They are defined using truncations and suspensions. **Definition 117.** (K(G,n)) For an abelian group G : abgroup, the type KGn(G) : nat $\to \mathcal{U}$. $$K(G,n) := \begin{cases} n = 0 \leadsto \text{discreteTopology}(G) \\ n \ge 1 \leadsto \|\Sigma^{n-1}(K1'(G.1, G.2.1))\|_n \end{cases}$$ ``` \begin{array}{lll} def \ KGn \ (G: \ abgroup) \ : \ \mathbf{N} \ {\rightarrow} \ U \\ := \ split \ \{ \ zero \ {\rightarrow} \ discreteTopology \ G \\ & | \ succ \ n \ {\rightarrow} \ nTrunc \ (\Sigma \ (K1' \ (G.1\,,G.2.1)) \ n) \ (succ \ n) \\ & \} \end{array} ``` **Theorem 72.** (Elimination KGn) For $n \ge 1$, a type $B : \mathcal{U}$ with isNGroupoid(B, succ n), and a map f : suspension(K1'G) $\to B$, there exists $\operatorname{rec}_{KGn} : KGnG(\operatorname{succ} n) \to B$, defined via nTruncRec. #### 8.13 Localization Localization constructs an F-local type from a type X, with respect to a family of maps $F_A: S(a) \to T(a)$. **Definition 118.** (Localization Modality) For a family of maps $F_A: S(a) \to T(a)$, the F-localization $L_F^{AST}(X): \mathcal{U}$. **Theorem 73.** (Localization Induction) For any $P: \Pi_{X:U}L_{F_A}(X) \to U$ with $\{n,r,s\}$, satisfying coherence conditions, there exists $i: \Pi_{x:L_{F_A}(X)}P(x)$, such that $i \cdot \operatorname{center}_X = n$. #### Conclusion HITs directly encode CW-complexes in HoTT, bridging topology and type theory. They enable the analysis and manipulation of homotopical types. ## Література - [1] The Univalent Foundations Program, Homotopy Type Theory: Univalent Foundations of Mathematics, IAS, 2013. - [2] C. Cohen, T. Coquand, S. Huber, A. Mörtberg, *Cubical Type Theory*, Journal of Automated Reasoning, 2018. - [3] A. Mörtberg et al., Agda Cubical Library, https://github.com/agda/cubical, 2023. - [4] M. Shulman, *Higher Inductive Types in HoTT*, https://arxiv.org/abs/1705.07088, 2017. - [5] J. D. Christensen, M. Opie, E. Rijke, L. Scoccola, *Localization in Homotopy Type Theory*, https://arxiv.org/pdf/1807.04155.pdf, 2018. - [6] E. Rijke, M. Shulman, B. Spitters, *Modalities in Homotopy Type Theory*, https://arxiv.org/pdf/1706.07526v6.pdf, 2017. - [7] M. Riley, E. Finster, D. R. Licata, Synthetic Spectra via a Monadic and Comonadic Modality, https://arxiv.org/pdf/2102.04099.pdf, 2021. # Issue V: Modalities and Identity Systems ## Namdak Tonpa 5 травня 2025 р. #### Анотація This article explores the interplay between modalities, identity systems, and homologies in the framework of Homotopy Type Theory (HoTT).
We formalize modalities and identity systems as structures within $(\infty,1)$ -categories and investigate the homological properties arising when their functor compositions are treated as groups. Special attention is given to topological structures, such as the Möbius strip, that emerge from non-trivial compositions, and their role in generating non-trivial fundamental groups. A classification of generators is provided, highlighting their categorical and homotopical properties. ## 9 Modalities and Identity Systems Homotopy Type Theory (HoTT) provides a powerful framework for studying categorical structures through the lens of types, paths, and higher homotopies. In this context, modalities and $identity\ systems$ serve as fundamental constructs that encode localization and identification properties, respectively. When compositions of their associated functors are interpreted as groups, they give rise to homological structures, such as fundamental groups, that can model complex topological spaces like the Möbius strip. This article formalizes these concepts and explores their implications in $(\infty,1)$ -toposes, with a focus on the emergence of CW-complexes and homologies. ## 9.1 Modality **Definition 119** (Modality). A modality in HoTT is a structure comprising: ``` def Modality := \Sigma (modality: U \to U) (isModal : U \rightarrow U) \Pi (A : U), A \rightarrow modality A) (eta: (elim: \Pi (A : U) (B : modality A \rightarrow U) (B-Modal : Π (x : modality A), is Modal (B x)) (f: \Pi (x : A), (B (eta A x))), \begin{array}{cccc} & & & & & & \\ & & & & & \\ & (\text{II } (x : \text{modality } A), B x)) & & \\ & (\text{elim-}\beta : & \Pi & (A : U) & (B : \text{modality } A \rightarrow U) \end{array} (B-Modal : \Pi (x : modality A), isModal (B x)) (f : \Pi (x : A), (B (eta A x))) (a : A), PathP (<>B (eta A a)) (elim A B B-Modal f (eta A a)) (f a)) (modalityIsModal : \Pi (A : U), isModal (modality A)) (propIsModal : Π (A : U), Π (a b : isModal A), PathP (<_>isModal A) a b) isModal (PathP (<_>modality A) x y)), 1 ``` where \mathcal{U} is a universe of types, η is a natural inclusion, and elim provides a universal property for modal types (see [1] for details). Modalities act as localization functors, projecting types onto subcategories of modal types. For instance, the *discrete modality* (\flat) trivializes higher homotopies, while the *codiscrete modality* (\sharp) makes types contractible. ## 9.2 Identity Systems **Definition 120** (Identity System). For a type $A: \mathcal{U}$, an identity system is defined as: where = -form generalizes the identity type, and = -ctor ensures reflexivity. Identity systems generalize paths in HoTT, allowing the construction of types with non-trivial fundamental groups, such as the Möbius strip, where identifications generate \mathbb{Z} . ## 9.3 Classification of Generators The following table classifies key generators, including modalities and identity systems, based on their categorical and homotopical properties. Табл. 5: Classification of Generators in Homotopy Type Theory | Generator | Notation | Type | Adjunction | |---------------------------------|---------------------|----------------|------------------------------| | Discrete | þ | Modality | b → # | | Codiscrete | # | Comodality | b → # | | Bosonic | \bigcirc | Modality | $\bigcirc \dashv \bigcirc +$ | | ${\bf Fermionic/Infinitesimal}$ | 3 | Modality | $3 \dashv 3_+$ | | Rheonomic | Rh | Modality | _ | | Reduced | \Re | Modality | _ | | Polynomial | W | Inductive | _ | | Polynomial | M | Coinductive | _ | | Higher Inductive | $_{ m HIT}$ | Inductive | $HIT \dashv Path$ | | Higher Coinductive | CoHIT | Coinductive | Path \dashv CoHIT | | Path Spaces | Path | Identification | $\mathrm{HIT}\dashv\Im$ | | Identity | $=,\simeq,\cong$ | Identification | _ | | Isomporphism | $=,\simeq,\cong$ | Identification | _ | | Equality | $=,\simeq,\cong$ | Identification | | ## 9.4 Homologies from Functor Compositions When functor compositions of modalities and identity systems are treated as groups, they generate homological structures, such as fundamental groups or homology groups. For example, consider the composition $\flat \circ \sharp \circ \flat$. In a topological context, this may correspond to a localization that preserves certain homotopical features, potentially yielding a CW-complex like the Möbius strip. **Theorem 74.** Let \mathcal{C} be an $(\infty,1)$ -topos, and let $F = \flat \circ \sharp \circ \flat$ be a functor composition treated as a group action. The resulting structure induces a fundamental group isomorphic to \mathbb{Z} for types modeling the Möbius strip. Sketch. The Möbius strip can be constructed as a higher inductive type (HIT) with an identity system generating \mathbb{Z} . The functor \flat discretizes the type, \sharp contracts it, and the second \flat reintroduces discrete structure, preserving the nontrivial loop in the identification system. The resulting type has a fundamental group $\pi_1 \cong \mathbb{Z}$. ### 9.5 Topological Interpretation The Möbius strip, as a CW-complex, arises naturally in this framework. Its non-trivial fundamental group is generated by an identity system, while modalities like \Im or \bigcirc introduce twisting or orientation properties. This connects to topological quantum field theories (TQFTs), where surfaces like the Möbius strip encode non-trivial symmetries. #### 9.6 Conclusion Modalities and identity systems in HoTT provide a rich framework for modeling categorical and topological phenomena. By treating functor compositions as groups, we uncover homological structures that bridge type theory and topology. Future work may explore applications in TQFT and synthetic differential geometry. # Література - [1] M. Shulman, Brouwer's fixed-point theorem in real-cohesive homotopy type theory, Mathematical Structures in Computer Science, 2018. - [2] The Univalent Foundations Program, Homotopy Type Theory: Univalent Foundations of Mathematics, 2013.