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Анотацiя

Here is presented a reincarnation of cubicaltt called Anders.
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1 Introduction to Anders
Anders is a Modal HoTT proof assistant based on: classical MLTT-80 [6] with
0, 1, 2, W types; CCHM [11] in CHM [2] flavour as cubical type system with
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hcomp/transp operations; HTS [8] strict equality on pretypes; infinitisemal [1]
modality primitives for differential geometry purposes. We tend not to touch
general recursive higher inductive schemes, instead we will try to express as
much HIT as possible through Suspensions, Truncations, Quotients primitives
built into type checker core. Anders also aims to support simplicial types Sim-
plex along with Hopf Fibrations built into core for sphere homotopy groups
processing. This modification is called Dan. Full stack of Groupoid Infinity
languages is given at AXIO/11 homepage.

The HTS language proposed by Voevodsky exposes two different presheaf
models of type theory: the inner one is homotopy type system presheaf that
models HoTT and the outer one is traditional Martin-Löf type system presheaf
that models set theory with UIP. The motivation behind this doubling is to have
an ability to express semisemplicial types. Theoretical work on merging inner
and outer languages was continued in 2LTT [9].

Installation. While we are on our road to Lean-like tactic language, cur-
rently we are at the stage of regular cubical HTS type checker with CHM-style
primitives. You may try it from Github sources: groupoid/anders2 or install
through OPAM package manager. Main commands are check (to check a pro-
gram) and repl (to enter the proof shell).

$ opam install anders

Anders is fast, idiomatic and educational (think of optimized Mini-TT). We
carefully draw the favourite Lean-compatible syntax to fit 200 LOC in Menhir.
The CHM kernel is 1K LOC. Whole Anders compiles under 1 second and checks
all the base library under 1/3 of a second [i5-12400]. Anders proof assistant as
Homotopy Type System comes with its own Homotopy Library3.

2 Syntax
The syntax resembles original syntax of the reference CCHM type checker cubi-
caltt, is slightly compatible with Lean syntax and contains the full set of Cubical
Agda [10] primitives (except generic higher inductive schemes).

Here is given the mathematical pseudo-code notation of the language expres-
sions that come immediately after parsing. The core syntax definition of HTS
language corresponds to the type defined in OCaml module:

Further Menhir BNF notation will be used to describe the top-level language
E parser.

Keywords. The words of a top-level language, file or repl, consist of
keywords or identifiers. The keywords are following: module, where, import,
option, def, axiom, postulate, theorem, (, ), [, ], <, >, /, .1, .2, Π, Σ, ,, λ,

1https://axio.groupoid.space
2https://github.com/groupoid/anders/
3https://anders.groupoid.space/lib/
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cosmos := Uj | Vk

var := var name | hole
pi := Π name E E | λ name E E | E E

sigma := Σ name E E | (E,E) | E.1 | E.2
0 := 0 | ind0 E E E
1 := 1 | ⋆ | ind1 E E E
2 := 2 | 02 | 12 | ind2 E E E

W := W ident E E | sup E E | indW E E
id := Id E | ref E | idJ E

path := Path E | Ei | E @ E
I := I | 0 | 1 | E

∨
E | E

∧
E | ¬E

part := Partial E E | [ (E = I) → E, ... ]
sub := inc E | ouc E | E [ I 7→ E ]
kan := transp E E | hcomp E
glue := Glue E | glue E | unglue E E
Im := Im E | Inf E | Join E | indIm E E

E := cosmos | var | MLTT | CCHM | Im
CCHM := path | I | part | sub | kan | glue
MLTT := pi | sigma | id

V,
∨

,
∧

, -, +, @, PathP, transp, hcomp, zero, one, Partial, inc, ×, →, :, :=,
7→, U, ouc, interval, inductive, Glue, glue, unglue.

Indentifiers. Identifiers support UTF-8. Indentifiers couldn’t start with :,
-, →. Sample identifiers: ¬-of-∨, 1→1, is-?, =, $∼]!005x, ∞, x→Nat.

Modules. Modules represent files with declarations. More accurate, BNF
notation of module consists of imports, options and declarations.
menhir

s t a r t <Module . f i l e> f i l e
s t a r t <Module . command> r e p l
r e p l : COLON IDENT exp1 EOF | COLON IDENT EOF | exp0 EOF | EOF
f i l e : MODULE IDENT WHERE l i n e * EOF
path : IDENT
l i n e : IMPORT path+ | OPTION IDENT IDENT | d e c l a r a t i o n s

Imports. The import construction supports file folder structure (without
file extensions) by using reserved symbol / for hierarchy walking.

Options. Each option holds bool value. Language supports following op-
tions: 1) girard (enables U : U); 2) pre-eval (normalization cache); 3) impredica-
tive (infinite hierarchy with impredicativity rule); In Anders you can enable or
disable language core types, adjust syntaxes or tune inner variables of the type
checker.

Declarations. Language supports following top level declarations: 1) axiom
(non-computable declaration that breakes normalization); 2) postulate (alter-
native or inverted axiom that can preserve consistency); 3) definition (almost
any explicit term or type in type theory); 4) lemma (helper in big game); 5)
theorem (something valuable or complex enough).
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axiom isProp (A : U) : U
de f i s S e t (A : U) : U
:= Π ( a b : A) (x y : Path A a b ) , Path (Path A a b) x y

Sample declarations. For example, signature isProp (A : U) of type U could
be defined as normalization-blocking axiom without proof-term or by providing
proof-term as definition.

In this example (A : U), (a b : A) and (x y : Path A a b) are called telescopes.
Each telescope consists of a series of lenses or empty. Each lense provides a set
of variables of the same type. Telescope defines parameters of a declaration.
Types in a telescope, type of a declaration and a proof-terms are a language
expressions exp1.
menhir

i dent : IRREF | IDENT
l en s e : LPARENS ident+ COLON exp1 RPARENS
t e l e s c op e : l e n s e t e l e s c op e
params : t e l e s c op e | [ ]
d e c l a r a t i o n s :

| DEF IDENT params DEFEQ exp1
| DEF IDENT params COLON exp1 DEFEQ exp1
| AXIOM IDENT params COLON exp1

Expressions. All atomic language expressions are grouped by four cate-
gories: exp0 (pair constructions), exp1 (non neutral constructions), exp2 (path
and pi applcations), exp3 (neutral constructions).
menhir

f a c e : LPARENS IDENT IDENT IDENT RPARENS }
part : f a c e+ ARROW exp1 }
exp0 : exp1 COMMA exp0 | exp1 }
exp1 : LSQ separated (COMMA, part ) RSQ }

| LAM te l e s c op e COMMA exp1 | PI t e l e s c op e COMMA exp1
| SIGMA te l e s c op e COMMA exp1 | LSQ IRREF ARROW exp1 RSQ
| LT ident+ GT exp1 | exp2 ARROW exp1
| exp2 PROD exp1 | exp2

The LR parsers demand to define exp1 as expressions that cannot be used
(without a parens enclosure) as a right part of left-associative application for
both Path and Pi lambdas. Universe indicies Uj (inner fibrant), Vk (outer pre-
types) and S (outer strict omega) are using unicode subscript letters that are
already processed in lexer.
menhir

exp2 : exp2 exp3 | exp2 APPFORMULA exp3 | exp3 }
exp3 : LPARENS exp0 RPARENS LSQ exp0 MAP exp0 RSQ }

| HOLE | PRE | KAN
| IDJ exp3

| exp3 FST | exp3 SND | NEGATE exp3
| INC exp3

| exp3 AND exp3 | exp3 OR exp3 | ID exp3
| REF exp3

| OUC exp3 | PATHP exp3 | PARTIAL exp3
| IDENT

| IDENT LSQ exp0 MAP exp0 RSQ } | HCOMP exp3
| LPARENS exp0 RPARENS } | TRANSP exp3 exp3
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3 Semantics
The idea is to have a unified layered type checker, so you can disbale/enable any
MLTT-style inference, assign types to universes and enable/disable hierachies.
This will be done by providing linking API for pluggable presheaf modules. We
selected 5 levels of type checker awareness from universes and pure type systems
up to synthetic language of homotopy type theory. Each layer corresponds to
its presheaves with separate configuration for universe hierarchies.
de f lang : U
:= i nduc t i v e { UNI : cosmos → lang

| PI : pure lang → lang
| SIGMA: t o t a l lang → lang
| ID : s t r i c t lang → lang
| PATH: homotopy lang → lang
| GLUE: g lue lang → lang
| INDUCTIVE: w012 lang → lang
}

We want to mention here with homage to its authors all categorical models
of dependent type theory: Comprehension Categories (Grothendieck, Jacobs),
LCCC (Seely), D-Categories and CwA (Cartmell), CwF (Dybjer), C-Systems
(Voevodsky), Natural Models (Awodey). While we can build some transports
between them, we leave this excercise for our mathematical components library.
We will use here the Coquand’s notation for Presheaf Type Theories in terms
of restriction maps.

3.1 Universe Hierarchies
Language supports Agda-style hierarchy of universes: prop, fibrant (U), interval
pretypes (V) and strict omega with explicit level manipulation. All universes
are bounded with preorder

Fibrantj ≺ Pretypesk (1)

in which j, k are bounded with equation:

j < k. (2)

Large elimination to upper universes is prohibited. This is extendable to Agda
model:
de f cosmos : U
:= i nduc t i v e { f i b r a n t : N

| p retypes : N
}

The Anders model contains only fibrant Uj and pretypes Vk universe hier-
archies.
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3.2 Dependent Types
Definition 1 (Type). A type is interpreted as a presheaf A, a family of sets
AI with restriction maps u 7→ u f,AI → AJ for f : J → I. A dependent type
B on A is interpreted by a presheaf on category of elements of A: the objects
are pairs (I, u) with u : AI and morphisms f : (J, v) → (I, u) are maps f : J →
such that v = u f . A dependent type B is thus given by a family of sets B(I, u)
and restriction maps B(I, u) → B(J, u f).

We think of A as a type and B as a family of presheves B(x) varying x : A.
The operation Π(x : A)B(x) generalizes the semantics of implication in a Kripke
model.

Definition 2 (Pi). An element w : [Π(x : A)B(x)](I) is a family of functions
wf : Π(u : A(J))B(J, u) for f : J → I such that (wfu)g = wf g(u g) when
u : A(J) and g : K → J .

de f pure ( lang : U) : U
:= i nduc t i v e { p i : name → nat → lang → lang → pure lang

| lambda : name → nat → lang → lang
| app : lang → lang
}

Definition 3 (Sigma). The set Σ(x : A)B(x) is the set of pairs (u, v) when
u : A(I), v : B(I, u) and restriction map (u, v) f = (u f, v f).

de f t o t a l ( lang : U) : U
:= i nduc t i v e { sigma : name → lang → t o t a l lang

| pa i r : lang → lang
| f s t : lang
| snd : lang
}

The presheaf with only Pi and Sigma is called MLTT-72 [4]. Its internal-
ization in Anders is as follows:
de f MLTT (A : U) : U1

:= Σ (Π−form : Π (B : A → U) , U)
(Π−c to r 1 : Π (B : A → U) , Pi A B → Pi A B)
(Π−e l im 1 : Π (B : A → U) , Pi A B → Pi A B)
(Π−comp1 : Π (B : A → U) ( a : A) ( f : Pi A B) ,

= (B a ) (Π−e l im 1 B (Π−c to r 1 B f ) a ) ( f a ) )
(Π−comp2 : Π (B : A → U) ( a : A) ( f : Pi A B) ,

= ( Pi A B) f (λ ( x : A) , f x ) )
(Σ−form : Π (B : A → U) , U)
(Σ−c to r 1 : Π (B : A → U) ( a : A) (b : B a ) , Sigma A B)
(Σ−e l im 1 : Π (B : A → U) (p : Sigma A B) , A)
(Σ−e l im 2 : Π (B : A → U) (p : Sigma A B) , B ( pr 1 A B p ) )
(Σ−comp1 : Π (B : A → U) ( a : A) (b : B a ) ,

= A a (Σ−e l im 1 B (Σ−c to r 1 B a b ) ) )
(Σ−comp2 : Π (B : A → U) ( a : A) (b : B a ) ,

= (B a ) b (Σ−e l im 2 B (a , b ) ) )
(Σ−comp3 : Π (B : A → U) (p : Sigma A B) ,

= ( Sigma A B) p ( pr 1 A B p , pr 2 A B p ) ) , Unit
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3.3 Path Equality
The fundamental development of equality inside MLTT provers led us to the
notion of ∞-groupoid as spaces. In this way Path identity type appeared in the
core of type checker along with De Morgan algebra on built-in interval type.
de f CCHM ( lang : U) : U
:= i nduc t i v e { pretype (n : nat )

| PathP (_: lang ) | PLam (_: lang ) | PApp ( f a : lang )
| I | 0 | 1 | And ( a b : lang ) | Or ( a b : lang ) | Neg (_: lang )
| Transp ( a b : lang ) | HComp ( a b c d : lang )
| Pa r t i a l (_: lang ) | Part ia lP ( a b : lang ) | System (_: lang )
| Sub ( a b c : lang ) | Inc ( a b : lang ) | Ouc ( : lang )
| Glue ( : lang ) | GlueElem ( a b c : lang ) | Unglue (_: lang )
}

Definition 4 (Cubical Presheaf I). The identity types modeled with another
presheaf, the presheaf on Lawvere category of distributive lattices (theory of De
Morgan algebras) denoted with □ — I : □op → Set.

Definition 5 (Properties of I). The presheaf I: i) has to distinct global elements
0 and 1 (B1); ii) I(I) has a decidable equality for each I (B2); iii) I is tiny so
the path functor X 7→ XI has right adjoint (B3).; iv) I has meet and join
(connections).

Interval Pretypes. While having pretypes universe V with interval and
associated De Morgan algebra (∧, ∨, -, 0, 1, I) is enough to perform DNF normal-
ization and proving some basic statements about path, including: contractability
of singletons, homotopy transport, congruence, functional extensionality; it is
not enough for proving β rule for Path type or path composition.

Generalized Transport. Generalized transport transp adresses first prob-
lem of deriving the computational β rule for Path types:
theorem Pathβ (A : U) ( a : A) (C : D A) (d : C a a ( r e f l A a ) )

: Equ (C a a ( r e f l A a ) ) d ( J A a C d a ( r e f l A a ) )
:= λ (A : U)

( a : A)
(C : Π ( x : A) (y : A) , PathP (<\_> A) x y → U) ,
(d : C a a (<\_> a ) ) ,
<j> transp (<\_> C a a (<\_> a ) ) −j d

Transport is defined on fibrant types (only) and type checker should cover
all the cases Note that transpi (Pathj A v w) φ u0 case is relying on comp
operation which depends on hcomp primitive. Here is given the first part of
Simon Huber equations [3] for transp:
transp i N φ u0 =u0

transp i U φ A =A
transp i (Π ( x : A) , B) φ u0 v =transp i B(x/w) φ (u0 w( i /0) )
transp i (Σ ( x : A) , B) φ u0 =

( transp i A φ (u0 . 1 ) , t ransp i B(x/v ) φ (u0 . 2 ) )
transp i ( Pathj v w) φ u0 =

<j> compi A [ϕ u0 j , ( j=0) 7→ v , ( j=1) 7→ w] (u0 j )
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transp i ( Glue [φ 7→ (T,w) ] A) ψ u0 =g lue [ϕ( i /1) 7→ t ’ 1 ] a ’ 1 : B( i /1)
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Partial Elements. In order to explicitly define hcomp we need to specify
n-cubes where some faces are missing. Partial primitives isOne, 1=1 and UIP on
pretypes are derivable in Anders due to landing strict equality Id in V universe.
The idea is that (Partial A r) is the type of cubes in A that are only defined
when IsOne r holds. (Partial A r) is a special version of the function space IsOne
r → A with a more extensional equality: two of its elements are considered
judgmentally equal if they represent the same subcube of A. They are equal
whenever they reduce to equal terms for all the possible assignment of variables
that make r equal to 1.
de f Par t i a l ’ (A : U) ( i : I ) := Pa r t i a l A i
de f isOne : I −> V := Id I 1
de f 1=>1 : isOne 1 := r e f 1
de f UIP (A : V) ( a b : A) (p q : Id A a b) : Id ( Id A a b) p q := r e f p

Cubical Subtypes. For (A : U) (i : I) (Partial A i) we can define subtype
A [ i 7→ u ]. A term of this type is a term of type A that is definitionally equal
to u when (IsOne i) is satisfied. We have forth and back fusion rules ouc (inc v)
= v and inc (outc v) = v. Moreover, ouc v will reduce to u 1=1 when i=1.
de f sub ’ (A : U) ( i : I ) (u : Pa r t i a l A i ) : V := A [ i 7→ u ]
de f inc ’ (A : U) ( i : I ) ( a : A) : A [ i 7→ [ ( i =
1) → a ] ] := i n c A i a
de f ouc ’ (A : U) ( i : I ) (u : Pa r t i a l A i ) ( a : A [ i 7→ u ] ) : A := ouc a

Homogeneous Composition. hcomp is the answer to second problem:
with hcomp and transp one can express path composition, groupoid, category
of groupoids (groupoid interpretation and internalization in type theory). One of
the main roles of homogeneous composition is to be a carrier in [higher] inductive
type constructors for calculating of homotopy colimits and direct encoding of
CW-complexes. Here is given the second part of Simon Huber equations [3] for
hcomp:
hcompi N [ϕ 7→ 0 ] 0 =0
hcompi N [ϕ 7→ S u ] (S u0 ) =S (hcompi N [ϕ 7→ u ] u0 )
hcompi U [ϕ 7→ E] A =Glue [ϕ 7→ (E( i /1) , equiv i E( i /1− i ) ) ] A
hcompi (Π ( x : A) , B) [ϕ 7→ u ] u0 v =hcompi B(x/v ) [ϕ 7→ u v ] (u0 v )
hcompi (Σ ( x : A) , B) [ϕ 7→ u ] u0 =

( v ( i /1) , compi B(x/v ) [ϕ 7→ u . 2 ] u0 . 2 )
hcompi ( Pathj A v w) [ϕ 7→ u ] u0 =

<j> hcompi A[ϕ 7→ u j , ( j=0) 7→ v , ( j=1) 7→ w] (u0 j )
hcompi ( Glue [ϕ 7→ (T,w) ] A) [ψ 7→ u ] u0 =
g lue [ϕ 7→ u( i / 1 ) ] ( unglue u( i /1) )

3.4 Strict Equality
To avoid conflicts with path equalities which live in fibrant universes strict
equalities live in pretypes universes.
de f s t r i c t ( lang : U) : U
:= i nduc t i v e { Id : name → lang

| r e f : lang → lang
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| idJ : lang → lang → lang
}

We use strict equality in HTS for pretypes and partial elements which live in
V. The presheaf configuration with Pi, Sigma and Id is called MLTT-75 [5]. The
presheaf configuration with Pi, Sigma, Id and Path is called HTS (Homotopy
Type System).

3.5 Glue Types
The main purpose of Glue types is to construct a cube where some faces have
been replaced by equivalent types. This is analogous to how hcomp lets us
replace some faces of a cube by composing it with other cubes, but for Glue
types you can compose with equivalences instead of paths. This implies the
univalence principle and it is what lets us transport along paths built out of
equivalences.
de f g lue ( lang : U) : U
:= i nduc t i v e { Glue : lang → lang → lang

| g lue : lang → lang
| unglue : lang → lang
}

Basic Fibrational HoTT core by Pelayo, Warren, and Voevodsky (2012).
de f f i b e r (A B : U) ( f : A →
B) (y : B) : U := Σ ( x : A) , Path B y ( f x )
de f i sEquiv (A B : U) ( f : A →
B) : U := Π ( y : B) , i sContr ( f i b e r A B f y )
de f equiv (A B : U) : U := Σ ( f : A →B) , i sEquiv A B f
de f c on t rS i ng l (A : U) ( a b : A) (p : Path A a b)

: Path (Σ ( x : A) , Path A a x ) (a ,<i>a ) (b , p) := <i> (p @ i , <j> p @ i ∨ j )
de f id I sEqu iv (A : U) : i sEquiv A A ( id A)
:= λ ( a : A) , ( ( a ,<i>a ) , λ ( z : f i b e r A A ( id A) a ) , c on t rS i ng l A a z . 1 z . 2 )

de f idEquiv (A : U) : equiv A A := ( id A, i sCont rS ing l A)

The notion of Univalence was discovered by Vladimir Voevodsky as forth
and back transport between fibrational equivalence as contractability of fibers
and homotopical multi-dimentional heterogeneous path equality. The Equiv →
Path type is called Univalence type, where univalence intro is obtained by Glue
type and elim (Path → Equiv) is obtained by sigma transport from constant
map.
de f univ−format ion (A B : U) := equiv A B → PathP (<i> U) A B
def univ−i n t r o (A B : U) : univ−format ion A B := λ ( e : equiv A B) ,

<i> Glue B (∂ i ) [ ( i =0) → (A, e ) , ( i = 1) → (B, idEquiv B) ]
de f univ−e l im (A B : U) (p : PathP (<i> U) A B)

: equiv A B := transp (<i> equiv A (p @ i ) ) 0 ( idEquiv A)
de f univ−computation (A B : U) (p : PathP (<i> U) A B)

: PathP (<i> PathP (<i> U) A B) ( univ−i n t r o A B ( univ−e l im A B p ) ) p
:= <j i> Glue B ( j ∨ ∂ i )

[ ( i = 0) → (A, univ−e l im A B p ) , ( i = 1) → (B, idEquiv B) ,
( j = 1) → (p @ i , univ−e l im (p @ i ) B (<k> p @ ( i ∨ k ) ) ) ]
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Similar to Fibrational Equivalence the notion of Retract/Section based Iso-
morphism could be introduced as forth-back transport between isomorphism
and path equality. This notion is somehow cannonical to all cubical systems
and is called Unimorphism here.
de f i so−Form (A B: U) : U1 := i s o A B −> PathP (<i>U) A B
def i so−In t ro (A B: U) : i so−Form A B
:= λ ( x : i s o A B) , i soPath A B x . f x . g x . s x . t

de f i so−Elim (A B : U) : PathP (<i> U) A B −> i s o A B
:= λ (p : PathP (<i> U) A B) ,

( coe r c e A B p , coe r c e B A (<i> p @ − i ) ,
t rans−1−t rans A B p , λ ( a : A) , <k> trans−t rans−1 A B p a @−k , ⋆)

Orton-Pitts basis for univalence computability (2017):
de f ua (A B : U) (p : equiv A B) : PathP (<i> U) A B := univ−i n t r o A B p
de f ua−β (A B : U) ( e : equiv A B) : Path (A →
B) ( t rans A B (ua A B e ) ) e . 1

:= <i> λ ( x : A) , ( id fun=idfun ’ ’ B @ − i )
( id fun=idfun ’ ’ B @ − i ) ( ( id fun=idfun ’ B @ − i ) ( e . 1 x ) ) )

3.6 de Rham Stack
Stack de Rham or Infinitezemal Shape Modality is a basic primitive for proving
theorems from synthetic differential geometry. This type-theoretical framework
was developed for the first time by Felix Cherubini under the guidance of Urs
Schreiber. The Anders prover implements the computational semantics of the
de Rham stack.
de f ι (A : U) ( a : A) : ℑ A := ℑ−uni t a
de f µ (A : U) ( a : ℑ (ℑ A)) := ℑ− j o i n a
de f i s −coreduced (A : U) : U := i sEquiv A (ℑ A) (ι A)
de f ℑ−coreduced (A : U) : i s −coreduced (ℑ A)
:= isoToEquiv (ℑ A) (ℑ (ℑ A)) (ι (ℑ A)) (µ A)

(λ ( x : ℑ (ℑ A) ) , <i>x ) (λ ( y : ℑ A) ,<i>y )
de f ind−ℑβ (A : U) (B : ℑ A →
U) ( f : Π ( a : A) , ℑ (B (ι A a ) ) ) ( a : A)

: Path (ℑ (B (ι A a ) ) ) ( ind−ℑ A B f (ι A a ) ) ( f a ) := <i> f a
de f ind−ℑ−const (A B : U) (b : ℑ B) (x : ℑ A)

: Path (ℑ B) ( ind−ℑ A (λ ( i : ℑ A) , B) (λ ( i : A) , b) x ) b := <i> b

Coreduced induction and its β−quation.
de f ℑ− ind (A : U) (B : ℑ A →U) ( c : Π ( a : ℑ A) ,

i s −coreduced (B a ) ) ( f : Π ( a : A) , B (ι A a ) ) ( a : ℑ A) : B a
:= ( c a ( ind−ℑ A B (λ ( x : A) , ι (B (ι A x ) ) ( f x ) ) a ) ) . 1 . 1

de f ℑ− indβ (A : U) (B : ℑ A →U) ( c : Π ( a : ℑ A) ,
i s −coreduced (B a ) ) ( f : Π ( a : A) , B (ι A a ) ) ( a : A)

: Path (B (ι A a ) ) ( f a ) ( (ℑ− ind A B c f ) (ι A a ) )
:= <i> sec−equiv (B (ι A a ) ) (ℑ (B (ι A a ) ) )

(ι (B (ι A a ) ) , c (ι A a ) ) ( f a ) @−i

Geometric Modal HoTT Framework: Infinitesimal Proximity, Formal Disk,
Formal Disk Bundle, Differential.
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de f ∼ (X : U) ( a x ’ : X) : U := Path (ℑ X) (ι X a ) (ι X x ’ )
de f D (X : U) ( a : X) : U := Σ (x ’ : X) , ∼ X a x ’
de f in f −prox−ap (X Y : U) ( f : X → Y) (x x ’ : X) (p : ∼ X x x ’ )

: ∼ Y ( f x ) ( f x ’ ) := <i> ℑ−app X Y f (p @ i )
de f T∞ (A : U) : U := Σ ( a : A) , D A a
de f in f −prox−ap (X Y : U) ( f : X → Y) (x x ’ : X) (p : ∼ X x x ’ )

: ∼ Y ( f x ) ( f x ’ ) := <i> ℑ−app X Y f (p @ i )
de f d (X Y : U) ( f : X → Y) (x : X) (ε : D X x)

: D Y ( f x ) := ( f ε . 1 , i n f −prox−ap X Y f x ε . 1 ε . 2 )
de f T∞−map (X Y : U) ( f : X →
Y) (τ : T∞ X) : T∞ Y := ( f τ . 1 , d X Y f τ . 1 τ . 2 )

12



3.7 Inductive Types
Anders currently don’t support Lean-compatible generic inductive schemes def-
inition. So instead of generic inductive schemes Anders supports well-founded
trees (W-types). Basic data types like List, Nat, Fin, Vec are implemented as
W-types in base library.

• W, 0, 1, 2 basis of MLTT-80 (Martin-Löf)

• General Schemes of Inductive Types (Paulin-Mohring)

3.8 Higher Inductive Types
As for higher inductive types Anders has Three-HIT foundation (Coequaliz-
er, Path Coequalizer and Colimit) to express other HITs. Also there are other
foundations to consider motivated by typical tasks in homotopy (type) theory:

• Coequalizer, Path Coequalizer and Colimit (van der Weide)

• Suspension, Truncation, Quotient (Groupoid Infinity)

• General Schemes of Higher Inductive Types (Cubical Agda)

3.9 Simplicial Types
Modification of Anders with Simplicial types and Hopf Fibrations built intro
the core of type checker is called Dan with following recursive syntax (having
f as Simplecies and coh as Path-coherence functions):
s implex n [ v0 . . vn ] { f 0 , f 1 , . . . , fn | coh i 1 i 2 . . . in } : Simplex

and instantiation example:
de f s∞ : S imp l i c i a l
:= Π ( v e : Simplex ) ,

δ10 =v , δ11 =v , s0 <v ,
δ20 =e ◦ e , s10 <δ20
⊢ ∞ (v , e , δ20 | δ10 δ11 , s0 , δ20 , s10 )
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4 Properties
Soundness and completeness link syntax to semantics. Canonicity, normaliza-
tion, and totality ensure computational adequacy. Consistency and decidability
guarantee logical and practical usability. Conservativity and initiality support
extensibility and universality.

4.1 Soundness and Completeness
Soundness is proven via cubical sets [11, 12, 13].

4.2 Canonicity, Normalization and Totality
Canonicity and normalization hold constructively [14, 15].

4.3 Consistency and Decidability
Consistency follows from the model [16]. Decidability is achieved for type check-
ing [13].

4.4 Conservativity and Initiality
Conservativity and initiality is discussed bu Shulman[18, 17]. Initiality is implicit
in the syntactic construction [12].

5 Conclusion
This paper presents Anders, a proof assistant that reimplements cubicaltt within
a Modal Homotopy Type System framework, based on MLTT-80 and CCH-
M/CHM. It integrates HTS strict equality, infinitesimal modalities, and prim-
itives like suspensions or quotients, with the extension adding simplicial types
and Hopf fibrations. Anders offers an efficient, idiomatic system — compiling in
under one second — using a syntax of Lean and semantics of cubicaltt and Cubi-
cal Agda. As a practical refinement of cubicaltt, Anders serves as an accessible
tool for homotopy type theory, with potential for incremental enhancements like
a tactic language.

14



Лiтература
[1] Felix Cherubini. Cartan Geometry in Modal Homotopy Type Theory. 2019.

https://arxiv.org/pdf/1806.05966.pdf.

[2] Thierry Coquand, Simon Huber, and Anders Mörtberg. On Higher Induc-
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[6] Per Martin-Löf. Intuitionistic Type Theory. 1980. https:
//raw.githubusercontent.com/michaelt/martin-lof/master/pdfs/
Bibliopolis-Book-retypeset-1984.pdf.

[7] Christine Paulin-Mohring. Introduction to the Calculus of Inductive Con-
structions. 2015. https://hal.inria.fr/hal-01094195/document.

[8] Vladimir Voevodsky. A simple type system with two identity
types. 2013. https://www.math.ias.edu/vladimir/sites/math.ias.
edu.vladimir/files/HTS.pdf.

[9] Danil Annenkov, Paolo Capriotti, Nicolai Kraus, and Christian Sattler.
Two-Level Type Theory and Applications. 2019. https://arxiv.org/pdf/
1705.03307.pdf.
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