
Issue XII: Calculus of Inductive Constructions

Namdak Tonpa

May 2025

Анотацiя

This article develops a specialized framework for proving strong nor-
malization in the Calculus of Constructions (CoC) and the Calculus of
Inductive Constructions (CIC). Building on Girard’s normalization frame-
work, we adapt neutral terms, elimination contexts, and reducibility can-
didates to handle dependent types, universes, inductive types, and general
induction. The framework is formalized with definitions, lemmas, and a
proof of strong normalization, explicitly addressing the complexities of
general induction. Applications to Coq’s type theory are discussed, em-
phasizing the framework’s modularity and robustness.

Змiст
1 Introduction to Frank 1

2 Syntax 3

3 Semantics 3

4 Properties 3
4.1 Rewriting Relation . 3
4.2 General Induction in CIC . 3
4.3 Neutral Terms . 4
4.4 Elimination Contexts . 4
4.5 Reducibility Candidates . 5
4.6 Strong Normalization for CoC and CIC 6

5 Conclusion 7

1 Introduction to Frank
The Calculus of Constructions (CoC) [15] is a dependently typed lambda calcu-
lus with impredicative universes, forming the core of many proof assistants. The
Calculus of Inductive Constructions (CIC) [5] extends CoC with inductive types
and general induction principles, enabling expressive data structures and proofs,

1

as seen in Coq. Strong normalization, ensuring that every well-typed term re-
duces to a normal form in finitely many steps, is essential for the consistency of
these systems.

The Riba’s work Toward a General Rewriting-Based Framework for Re-
ducibility [1], provides a unified approach to reducibility proofs using rewriting
relations and elimination contexts. This article presents a specialized framework
for CoC and CIC, adapting Girard concepts to their dependent types, universes,
inductive types, and the general induction principle of CIC. We formalize neutral
terms, elimination contexts, and reducibility candidates, proving strong normal-
ization and addressing the complexities of general induction. The framework’s
modularity makes it suitable for Coq and extensible to other dependently typed
systems.

2

2 Syntax
We define the syntax for CoC and CIC, including the general induction principle.
The set of terms T in CoC and CIC is defined as:

t ::= x | Sort s | Π(.x : A).B | λx : A.b | f a

| Ind(I : A){c1 : C1, . . . , cn : Cn} | Constr(i, I, t1, . . . , tm) | case(t, I, P, b1, . . . , bn)

where: - x is a variable, - Sort s represents universes (s = Prop,Typei), -
Π(.x : A).B is a dependent function type, - λx : A.b is a lambda abstraction, -
f a is an application, - Ind(I : A){c1 : C1, . . . , cn : Cn} defines an inductive type
I with constructors ci : Ci, - Constr(i, I, t1, . . . , tm) is the i-th constructor of I,
- case(t, I, P, b1, . . . , bn) is a dependent case expression for general induction on
I.

CoC includes only the first five constructs (x, Sort,Π, .λ, .), while CIC adds
inductive types, constructors, and case expressions.

3 Semantics
Here we define typing rules, and rewriting relations for CoC and CIC, including
the general induction principle.

4 Properties

4.1 Rewriting Relation
The rewriting relation →⊆ T × T includes: - Beta-reduction: (λx : A.b) a →
[x 7→ a]b. - Inductive reduction (iota-reduction): For an inductive type Ind(I :
A){c1 : C1, . . . , cn : Cn}, if t = Constr(i, I, t1, . . . , tm), then:

case(t, I, P, b1, . . . , bn) → bi t1 . . . tm

where bi is the branch corresponding to constructor ci.
A term t is strongly normalizing if every reduction sequence starting from t is

finite. Typing judgments are of the form Γ ⊢ t : A, where Γ = [x1 : A1, . . . , xn :
An] is a context.

4.2 General Induction in CIC
The general induction principle (dependent elimination) allows reasoning about
inductive types with dependent predicates. For an inductive type Ind(I : A){c1 :
C1, . . . , cn : Cn}, the case expression case(t, I, P, b1, . . . , bn) has type P t, where:
- P : Π(.x : I).Sort s is a dependent predicate, - Each branch bi : Π(.y1 :
T1). . . .Π(.ym : Tm).P Constr(i, I, y1, . . . , ym) corresponds to constructor ci.

This principle generalizes simple pattern matching by allowing the result
type to depend on the scrutinized term t.

3

4.3 Neutral Terms
Neutral terms are defined to exclude terms that trigger immediate reductions,
accommodating both beta- and iota-reductions in CIC.

Definition 1 (Neutral Terms). A term t ∈ T is neutral, denoted t ∈
N , if it is not a lambda abstraction (λx : A.b) or a constructor term
(Constr(i, I, t1, . . . , tm)). Formally:

N = {t ∈ T | t = x or t = Sort s or t = Π(.x : A).B or t = f a or

t = case(t′, I, P, b1, . . . , bn) where t′ /∈ Constr}

Case expressions are neutral unless their scrutinee is a constructor, reflecting
the iota-reduction rule [1].

4.4 Elimination Contexts
Elimination contexts are extended to handle general induction, capturing the
reduction behavior of case expressions.

Definition 2 (Elimination Contexts). An elimination context E ∈ E is defined
inductively:

E ::= [] | E t | case(E, I, P, b1, . . . , bn), t, bi ∈ T

The application E[t] is: - [][t] = t, - E u[t] = E[t]u, - case(E, I, P, b1, . . . , bn)[t] =
case(E[t], I, P, b1, . . . , bn).

A set E is adequate if: 1. Closure under composition: If E1, E2 ∈ E , then
E1[E2] ∈ E . 2. Stability under reduction: If E[t] → t′, then either t′ = E′[t]
for some E′ ∈ E , or t′ ∈ N , or t′ = Constr(i, I, t1, . . . , tm).

The inclusion of dependent case expressions ensures that general induction
is modeled correctly [2].

4

4.5 Reducibility Candidates
Reducibility candidates are defined to ensure strong normalization, accommo-
dating dependent types, universes, and inductive types with general induction.

Definition 3 (Reducibility Candidates). For a type A ∈ A, a set RA ⊆ T is a
reducibility candidate if:

1. Strong normalization: If t ∈ RA, then t is strongly normalizing.

2. Closure under reduction: If t ∈ RA and t → t′, then t′ ∈ RA.

3. Neutral terms: If t ∈ N and for all t → t′, t′ ∈ RA, then t ∈ RA.

4. Dependent types: If A = Π(.x : B).C, then t ∈ RA if for all u ∈ RB ,
t u ∈ R[x 7→u]C .

5. Universes: If A = Sort s, then RA contains all strongly normalizing terms
of type s.

6. Inductive types: If A = Ind(I : A′), then RA contains all terms t such
that for any case(t, I, P, b1, . . . , bn), the result is in RP t.

For inductive types, the reducibility candidate ensures that terms behave
correctly under general induction, reflecting the dependent nature of case ex-
pressions [2].

5

4.6 Strong Normalization for CoC and CIC
We prove strong normalization using the adapted reducibility framework, ex-
plicitly handling general induction.

Theorem 1 (Strong Normalization). For any context Γ and term t, if Γ ⊢ t : A,
then t ∈ RA, and thus t is strongly normalizing.

Proof. The proof proceeds by induction on the typing derivation Γ ⊢ t : A.
1. Case: t = x If Γ ⊢ x : A, then (x : A) ∈ Γ. Since x ∈ N and has no

reductions, x RadiolabelledRA.
2. Case: t = Sort s If Γ ⊢ Sort s : Sort s′, then Sort s ∈ N and is irreducible,

so Sort s ∈ RSort s′ .
3. Case: t = Π(.x : A).B If Γ ⊢ A : Sort s1, Γ, x : A ⊢ B : Sort s2, then

Γ ⊢ Π(.x : A).B : Sort s. By induction, A ∈ RSort s1 , B ∈ RSort s2 . Since
Π(.x : A).B ∈ N , it is in RSort s if all reducts are, which holds trivially.

4. Case: t = λx : A.b If Γ ⊢ A : Sort s, Γ, x : A ⊢ b : B, then Γ ⊢ λx :
A.b : Π(.x : A).B. By induction, for all u ∈ RA, [x 7→ u]b ∈ R[x 7→u]B . Thus,
(λx : A.b)u → [x 7→ u]b ∈ R[x7→u]B , so λx : A.b ∈ RΠ(.x:A).B .

5. Case: t = f a If Γ ⊢ f : Π(.x : A).B, Γ ⊢ a : A, then Γ ⊢ f a : [x 7→ a]B.
By induction, f ∈ RΠ(.x:A).B , a ∈ RA. Thus, f a ∈ R[x 7→a]B .

6. Case: t = Ind(I : A){c1 : C1, . . . , cn : Cn} If Γ ⊢ A : Sort s, and each
constructor ci : Ci is well-typed, then Γ ⊢ I : A. By induction, A ∈ RSort s, and
each Ci ∈ RSort si . Thus, I ∈ RA.

7. Case: t = Constr(i, I, t1, . . . , tm) If Γ ⊢ Constr(i, I, t1, . . . , tm) : I u1 . . . uk,
then each tj ∈ RTj

by induction. Although Constr is not neutral, its arguments
are reducible, and any case on Constr reduces to a branch in R, ensuring t ∈
RI u1...uk

.
8. Case: t = case(t′, I, P, b1, . . . , bn) If Γ ⊢ t′ : I u1 . . . uk, Γ ⊢

P : Π(.x : I).Sort s, and each branch bi : Π(.y1 : T1). . . .Π(.ym :
Tm).P Constr(i, I, y1, . . . , ym), then Γ ⊢ case(t′, I, P, b1, . . . , bn) : P t′.
By induction: - t′ ∈ RI u1...uk

, - P ∈ RΠ(.x:I).Sort s, - Each bi ∈
RΠ(.y1:T1)....Π(.ym:Tm).P Constr(i,I,y1,...,ym). If t′ = Constr(i, I, t1, . . . , tm), then:

case(t′, I, P, b1, . . . , bn) → bi t1 . . . tm

Since bi is reducible and each tj ∈ RTj
, the result is in RP Constr(i,I,t1,...,tm).

If t′ ∈ N , the case expression is neutral, and all its reducts are in RP t′ by
induction. Thus, t ∈ RP t′ .

Since RA contains only strongly normalizing terms, t ∈ RA implies t is
strongly normalizing [1, 2].

Compared to other normalization proofs: - Girard’s Candidates: Effective
for CoC but less modular for CIC’s inductive types and general induction [14].
- Werner’s Proof: Specific to CIC, addressing general induction but less general
for rewriting [2]. - Normalization by Evaluation (NbE): Semantic and efficient
but complex for general induction [3].

6

5 Conclusion
This specialized framework extends Riba’s rewriting-based reducibility approach
to prove strong normalization for CoC and CIC, explicitly incorporating the
general induction principle of CIC. By formalizing neutral terms, elimination
contexts, and reducibility candidates tailored to dependent types, universes,
inductive types, and dependent case expressions, it provides a robust tool for
Coq’s type theory. The framework’s modularity supports extensions like universe
polymorphism and guarded recursion, making it a versatile foundation for future
research in dependently typed systems.

Лiтература

Metatheory

[1] Riba, C. (2008). Toward a General Rewriting-Based Framework for Re-
ducibility. Submitted, available from the author’s homepage.

[2] Werner, B. (1994). Une Théorie des Constructions Inductives. PhD thesis,
Université Paris 7.

[3] Abel, A., & Sattler, C. (2012). Normalization by Evaluation for Call-
by-Push-Value and Polarized Lambda Calculus. https://hal.science/
hal-00779623/document.

[4] Harper, R., & Licata, D. (2007). Mechanizing Metatheory in a Logical
Framework. Journal of Functional Programming, 17(4-5), 613–673.

7

https://hal.science/hal-00779623/document
https://hal.science/hal-00779623/document

CIC

[5] Coquand, T., & Paulin-Mohring, C. (1990). Inductively Defined Types. Pro-
ceedings of the International Conference on Computer Logic (COLOG-88),
Lecture Notes in Computer Science, 417, 50–66.

[6] Paulin-Mohring, C. (1992). Inductive Definitions in the System Coq: Rules
and Properties. Proceedings of the First International Conference on Typed
Lambda Calculi and Applications (TLCA), Lecture Notes in Computer Sci-
ence, 664, 328–345.

[7] Paulin-Mohring, C. (2014). Introduction to the Calculus of Inductive Con-
structions. All about Proofs, Proofs for All, HAL Archives, https://inria.
hal.science/hal-01094195/document.

[8] Pfenning, F., & Paulin-Mohring, C. (1989). Inductively Defined Types in
the Calculus of Constructions. Proceedings of Mathematical Foundations of
Programming Semantics (MFPS), Lecture Notes in Computer Science, 442,
209–228. https://www.cs.cmu.edu/~fp/papers/mfps89.pdf.

[9] Asperti, A., Ricciotti, W., Sacerdoti Coen, C., & Tassi, E. (2009). A Compact
Kernel for the Calculus of Inductive Constructions. Sadhana, 34(1), 71–90.
https://www.cs.unibo.it/~sacerdot/PAPERS/sadhana.pdf.

[10] Dybjer, P. (1997). Inductive Families. Formal Aspects of Computing, 9(4),
329–354.

[11] Bezem, M., Coquand, T., Dybjer, P., & Escardó, M. (2024). Type Theory
with Explicit Universe Polymorphism. arXiv preprint, https://arxiv.org/
pdf/2212.03284.

PTS

[12] Coquand, T. (1996). An Algorithm for Type-Checking Dependent Types.
Science of Computer Programming, 26(1-3), 167–177.

[13] de Bruijn, N. G. (1972). Lambda Calculus Notation with Nameless Dum-
mies, a Tool for Automatic Formula Manipulation, with Application to the
Church-Rosser Theorem. Indagationes Mathematicae, 34(5), 381–392.

[14] Girard, J.-Y. (1972). Interprétation Fonctionnelle et Élimination des
Coupures de l’Arithmétique d’Ordre Supérieur. PhD thesis, Université Paris
7.

[15] Coquand, T., & Huet, G. (1988). The Calculus of Constructions. Informa-
tion and Computation, 76(2-3), 95–120. https://core.ac.uk/download/
pdf/82038778.pdf.

8

https://inria.hal.science/hal-01094195/document
https://inria.hal.science/hal-01094195/document
https://www.cs.cmu.edu/~fp/papers/mfps89.pdf
https://www.cs.unibo.it/~sacerdot/PAPERS/sadhana.pdf
https://arxiv.org/pdf/2212.03284
https://arxiv.org/pdf/2212.03284
https://core.ac.uk/download/pdf/82038778.pdf
https://core.ac.uk/download/pdf/82038778.pdf

	Introduction to Frank
	Syntax
	Semantics
	Properties
	Rewriting Relation
	General Induction in CIC
	Neutral Terms
	Elimination Contexts
	Reducibility Candidates
	Strong Normalization for CoC and CIC

	Conclusion

