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Анотацiя

This paper introduces the Henk language, a novel intermediate rep-
resentation grounded in a pure type system (PTS) with an infinite hi-
erarchy of universes, ensuring consistency within dependent type theory.
Henk serves as a foundational component of a language family designed for
formal verification. We present a robust implementation of Henk’s type
checker and bytecode extractor targeting the Erlang ecosystem, specifi-
cally the LING and BEAM virtual machines. The type checker, rooted in
Martin-Löf Type Theory (MLTT), supports configurable predicative and
impredicative universe hierarchies, enabling a flexible and trusted core for
certified applications. Henk’s syntax is compatible with the Morte lan-
guage, extending its base library with support for indexed universes. We
demonstrate programming paradigms in Henk, including seamless integra-
tion with Erlang’s inductive and coinductive data structures. A minimal
prelude library accompanies the implementation, supporting infinite I/O
operations to facilitate long-running, verified applications. We briefly out-
line the top-level language Christine, which extends Henk’s PTS core
with general induction, sigma types, and equality, as future work. Empir-
ical results showcase lambda evaluation performance on the BEAM virtu-
al machine, highlighting the efficacy of extracting PTS-based systems to
untyped, high-performance lambda interpreters. Drawing on foundation-
al systems like AUTOMATH, MLTT, and the Calculus of Constructions
(CoC), this work pioneers a performant approach to certified application
development. We propose a layered language stack, with Henk as the criti-
cal initial layer, advancing the state of the art in verified software systems.
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1 Introduction to Henk
IEEE1 standard and ESA2 regulatory documents define a number of tools and
approaches for verification and validation processes. The most advanced tech-
niques involve mathematical languages and notations. The age of verified math
was started by de Bruin’s AUTOMATH prover and Martin-Löf [10]’s type the-
ory. Today we have Coq, Agda, Lean, Idris, F* languages which are based on
Calculus of Inductive Constructions or CIC [6]. The core of CIC is Calculus of
Constructions or CoC [4]. Further development has lead to Lambda Cube [3]
and Pure Type Systems by Henk [2] and Morte3. Pure Type Systems are cus-
tom languages based on CoC with single Pi-type and possibly other extensions.
Notable extensions are ECC, ECC with Inductive Types [7], K-rules [8]. The
main motivation of Pure Type Systems is an easy reasoning about core, strong
normalization and trusted external verification due to compact type checkers. A
custom type checker can be implemented to run certified programs retrieved over
untrusted channels. The applications of such minimal cores are 1) Blockchain
smart-contract languages, 2) certified applications kernels, 3) payment process-
ing, etc.

1.1 Generating Trusted Programs
According to Curry-Howard, a correspondence inside Martin-Löf Type Theory
[10] proofs or certificates are lambda terms of particular types or specifications.
As both specifications and implementations are done in a typed language with
dependent types we can extract target implementation of a certified program
just in any programming language. These languages could be so primitive as
untyped lambda calculus and are usually implemented as untyped interpreters
(JavaScript, Erlang, PyPy, LuaJIT, K). The most advanced approach is code
generation to higher-level languages such as C++ and Rust (which is already
language with trusted features on memory, variable accessing, linear types, etc.).
In this work, we present a simple code extraction to Erlang programming lan-
guage as a target interpreter. However, we have also worked on C++ and Rust
targets as well.

1.2 System Architecture
Henk is a foundational programming language — the pure type system with
the infinite number of universes. All other higher languages like Per, Christine
fully contains (subsumes) Henk in its core.

1IEEE Std 1012-2016 — V&V Software verification and validation
2ESA PSS-05-10 1-1 1995 – Guide to software verification and validation
3Gabriella Gonzalez. Haskell Morte Library
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1.3 Place among other languages
The product is a regular Erlang/OTP application, that provides dependent
language services to the Erlang environment: 1) type checking; 2) normalization;
3) extraction. All parts of Henk compiler is written in Erlang language and
target/runtime language is Erlang.

• Level 0 — certified vectorized interpreter Joe;

• Level 1 — consistent pure type system Henk;

• Level 2 — higher language Per.

Табл. 1: List of languages, tried as verification targets
Target Class Intermediate Theory
C++ compiler/native HNC System F
Rust compiler/native HNC System F
JVM interpreter/native Java F-sub4

JVM interpreter/native Scala System F-omega
GHC Core compiler/native Haskell System D
GHC Core compiler/native Morte CoC
Haskell compiler/native Coq CIC
OCaml compiler/native Coq CIC
BEAM interpreter Henk PTS
O interpreter Henk PTS
K interpreter Q Applicative
PyPy interpreter/native N/A ULC
LuaJIT interpreter/native N/A ULC
JavaScript interpreter/native PureScript System F

2 Pure Type System
The Henk language is a dependently typed lambda calculus Per, an extension of
Coquand’ Calculus of Constructions [4] with the predicative hierarchy of indexed
universes. There is no fixpoint axiom, so there is no infinite term dependence,
the theory is fully consistent and has strong normalization property.

All terms respect ranking Axioms inside the sequence of universes Sorts
and complexity of the dependent term is equal to the maximum complexity of
term and its dependency Rules. The universe system is completely described
by the following PTS notation due to Barendregt [3]:

Sorts = Type.{i}, i : Nat
Axioms = Type.{i} : Type.{inc i}
Rules = Type.{i}⇝ Type.{j} : Type.{max i j}
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The Henk language is based on languages described first by Erik Meijer
and Simon Peyton Jones in 1997 [2]. Later on in 2015 Morte implementation of
Henk design appeared in Haskell, using the Boem-Berrarducci encoding of non-
recursive lambda terms. It is based only on one type constructor Π, its intro λ
and apply eliminator, infinite number of universes, and β-reduction. The design
of Om language resemble Henk and Morte both in design and in implementation.
This language intended to be small, concise, easy provable and able to produce
the verifiable piece of code that can be distributed over the networks, compiled
at the target platform with a safe linkage.

2.1 BNF and AST
Henk syntax is compatible with CoC presented in Morte and Henk languages.
However, it has extension in a part of specifying universe index as a Nat number.
Traditionally we present the language in Backus-Naur form. Equivalent AST
tree encoding from the right side.
<> : := #opt ion data pts = s t a r (n : nat )
V : := #i d e n t i f i e r | var (n : name)
S : := * < #number > | app ( f a : pts )
O : := S | V | ( O ) | lambda (x : name) (d c : pts )

| O O | O → O | pi ( x : name) (d c : pts )
| λ ( I : O ) → O
| ∀ ( I : O ) → O

2.2 Universes
As Henk has infinite number of universes it should include metatheoretical
Nat inductive type in its core. Henk supports predicative and impredicative
hierarchies.

U0 : U1 : U2 : U3 : ...

Where U0 — propositions, U1 — sets, U2 — types and U3 — kinds, etc.

Nat
(I)

o : Nat

Typeo
(S)

You may check if a term is a universe with the star function. If an argument
is not a universe it returns {error,_}.
s t a r ( : s tar ,N) → N

_ → ( : e r ro r , "* ")

9



2.3 Predicative Universes
All terms obey the Axioms ranking inside the sequence of Sorts universes,
and the complexity Rules of the dependent term is equal to a maximum of
the term’s complexity and its dependency. Note that predicative universes are
incompatible with Church lambda term encoding. You choose either predicative
or impredicative universes with a type checker parameter.

i : Nat, j : Nat, i < j

Typei : Typej
(A1)

i : Nat, j : Nat

Typei → Typej : Typemax(i,j)
(R1)

2.4 Impredicative Universes
Propositional contractible bottom space is the only available extension to the
predicative hierarchy which doesn’t lead to inconsistency. However, there is an-
other option to have the infinite impredicative hierarchy.

i : Nat

Typei : Typei+1
(A2)

i : Nat, j : Nat

Typei → Typej : Typej
(R2)

2.5 Hierarchy Switching
Function h returns the target Universe of B term dependence on A. There are
two dependence rules known as the predicative one and the impredicative one
which returns max universe or universe of the last term respectively.
dep A B : impred i ca t i v e → B

A B : p r ed i c a t i v e → max A B

h A B → dep A B : impred i ca t i v e

2.6 Contexts
The contexts model a dictionary with variables for type checker. It can be typed
as the list of pairs or List Sigma. The elimination rule is not given here as in
our implementation the whole dictionary is destroyed after type checking.

Γ : Context
(Ctx-formation)

Γ : Context

Empty : Γ
(Ctx-intro1)

A : Typei, x : A, Γ : Context

(x : A) ⊢ Γ : Context
(Ctx-intro2)
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2.7 Single Axiom Language
This language is called one axiom language (or pure) as eliminator and intro-
duction rules inferred from type formation rule. The only computation rule of Pi
type is called beta-reduction. Computational rules of language are called opera-
tional semantics and establish equality of substitution and lambda application.
Operational semantics in that way defines the rewrite rules of computations.

x : A ⊢ B : Type

Π (x : A) → B : Type
(Π-formation)

x : A ⊢ b : B
λ (x : A) → b : Π (x : A) → B

(λ-intro)

f : (Π (x : A) → B) a : A

f a : B [a/x]
(App-elimination)

x : A ⊢ b : B a : A

(λ (x : A) → b) a = b [a/x] : B [a/x]
(β-computation)

π1 : A u : A ⊢ π2 : B

[π1/u] π2 : B
(subst)

The theorems (specification) of PTS could be embedded in itself and used as
Logical Framework for the Pi type. Here is the example in the higher language.
r ecord Pi (A: Type ) :=

( i n t r o : (A → Type) → Type)
( lambda : (B: A → Type) → pi A B → i n t r o B)
( app : (B: A → Type) → i n t r o B → pi A B)
( applam : (B: A → Type) ( f : p i A B) → ( a : A) →

Path (B a ) ( ( app B ( lambda B f ) ) a ) ( f a ) )
( lamapp : (B: A → Type) (p : i n t r o B) →

Path ( i n t r o B) ( lambda B (λ ( a :A) → app B p a ) ) p)

The proofs intentionally left blank, as it proofs could be taken from various
sources [3]. The equalities of computational semantics presented here as Path
types in the higher language.

The Henk language is the extention of the Henk with the remote AST
node which means remote file loading from trusted storage, anyway this will be
checked by the type checker. We deny recursion over the remote node.

We also add an index to var for simplified de Bruijn indexes, we allow over-
lapped names with tags, incremented on each new occurrence.
data om = s t a r (n : nat )

| var (n : name) (n : nat )
| remote (n : name) (n : nat )
| p i ( x : name) (n : nat ) (d c : om)
| fn (x : name) (n : nat ) (d c : om)
| app ( f a : om)

Our typechecker differs from cannonical example of Coquand [19]. We based
our typechecker on variable Substitution, variable Shifting, term Normal-
ization, definitional Equality anf Type Checker itself.
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2.8 Type Checker
For sure in a pure system, we should be careful with :remote AST node. Remote
AST nodes like #List/Cons or #List/map are remote links to files. So using
trick one should desire circular dependency over :remote.
type ( : s tar ,N) D → ( : s tar ,N+1)

( : var ,N, I ) D → : t rue =p r o p l i s t s : i s_de f ined N B, om: keyget N D I
( : remote ,N) D → om: cache ( type N D)
( : pi ,N, 0 , I ,O) D → ( : s tar , h ( s t a r ( type I D) ) , s t a r ( type O [ (N, norm I ) |D] ) )
( : fn ,N, 0 , I ,O) D → l e t s t a r ( type I D) , NI =norm I

in ( : pi ,N, 0 , NI , type (O, [ (N, NI ) |D] ) )
( : app ,F ,A) D → l e t T =type (F ,D) ,

( : pi ,N, 0 , I ,O) = T, : t rue = eq I ( type A D)
in norm ( subst O N A)

2.9 Shifting
Shift renames var N in B. Renaming means adding 1 to the nat component of
variable.

sh ( : s tar ,X) N P → ( : s tar ,X)
( : var ,N, I ) N P → ( : var ,N, I+1) when I >=P

→ ( : var ,N, I )
( : remote ,X) N P → ( : remote ,X)
( : pi ,N, 0 , I ,O) N P → ( : pi ,N, 0 , sh I N P, sh O N P+1)
( : fn ,N, 0 , I ,O) N P → ( : fn ,N, 0 , sh I N P, sh O N P+1)
( : app ,L ,R) N P → ( : app ,L ,R)

2.10 Substitution
Substitution replaces variable occurance in terms.

sub ( : s tar ,X) N V L → ( : s tar ,X)
( : var ,N,L) N V L → V
( : var ,N, I ) N V L → ( : var ,N, I −1) when I >L
( : remote ,X) N V L → ( : remote ,X)
( : pi ,N, 0 , I ,O) N V L → ( : pi ,N, 0 , sub I N V L , sub O N ( sh V N 0) L+1)
( : pi ,F ,X, I ,O) N V L → ( : pi ,F ,X, sub I N V L , sub O N ( sh V F 0) L)
( : fn ,N, 0 , I ,O) N V L → ( : fn ,N, 0 , sub I N V L , sub O N ( sh V N 0) L+1)
( : fn ,F ,X, I ,O) N V L → ( : fn ,F ,X, sub I N V L , sub O N ( sh V F 0) L)
( : app ,F ,A) N V L → ( : app , sub F N V L , sub A N V L)

12



2.11 Normalization
Normalization performs substitutions on applications to functions (beta-reduction)
by recursive entrance over the lambda and pi nodes.
norm ( : s tar ,X) → ( : s tar ,X)

( : var ,X) → ( : var ,X)
( : remote ,N) → cache (norm N [ ] )
( : pi ,N, 0 , I ,O) → ( : pi ,N, 0 , norm I , norm O)
( : fn ,N, 0 , I ,O) → ( : fn ,N, 0 , norm I , norm O)
( : app ,F ,A) → case norm F o f

( : fn ,N, 0 , I ,O) → norm ( subst O N A)
NF → ( : app ,NF, norm A) end

2.12 Equality
Definitional Equality simply checks the equality of Erlang terms.

eq ( : s tar ,N) ( : s tar ,N) → t rue
( : var ,N, I ) ( : var , (N, I ) ) → t rue
( : remote ,N) ( : remote ,N) → t rue
( : pi ,N1 , 0 , I1 ,O1) ( : pi ,N2 , 0 , I2 ,O2) →

l e t : t rue = eq I1 I2
in eq O1 ( subst ( s h i f t O2 N1 0) N2 ( : var ,N1 , 0 ) 0)

( : fn ,N1 , 0 , I1 ,O1) ( : fn ,N2 , 0 , I2 ,O2) →
l e t : t rue = eq I1 I2
in eq O1 ( subst ( s h i f t O2 N1 0) N2 ( : var ,N1 , 0 ) 0)

( : app , F1 ,A1) ( : app , F2 ,A2) → l e t : t rue =eq F1 F2 in eq A1 A2
(A,B) → ( : e r ro r , ( : eq ,A,B) )

13



3 Henk Tutorial
Here we will show some examples of Henk language usage. In this section,
we will show two examples. One is lifting PTS system to MLTT system by
defining Sigma and Equ types using only Pi type. We will use Bohm inductive
dependent encoding [13]. The second is to show how to write real world programs
in Henk that performs input/output operations within Erlang environment. We
show both recursive (finite, routine) and corecursive (infinite, coroutine, process)
effects.
$ . / henk help me
[ { a , [ expr ] , " to parse . Returns {_,_} or { er ror ,_} ."} ,
{ type , [ term ] , " typechecks and re tu rn s type . "} ,
{ erase , [ term ] , " to untyped term . Returns {_,_} ."} ,
{norm , [ term ] , " normal ize term . Returns term ’ s normal form ."} ,
{ f i l e , [ name ] , " load f i l e as binary . " } ,
{ s t r , [ b inary ] , " l e x i c a l t ok en i z e r . " } ,
{ parse , [ tokens ] , " parse g iven tokens in to {_,_} term ."} ,
{ f s t , [ { x , y } ] , " r e tu rn s f i r s t element o f a pa i r . " } ,
{snd , [ { x , y } ] , " r e tu rn s second element o f a pa i r . " } ,
{debug , [ bool ] , " enable / d i s ab l e debug output . " } ,
{mode , [ name ] , " s e l e c t metaverse f o l d e r . " } ,
{modes , [ ] , " l i s t a l l metaverses . " } ]

$ . / henk p r in t f s t e r a s e norm a "#L i s t /Cons"
\ Head

−> \ Tai l
−> \ Cons
−> \ Ni l
−> Cons Head ( Ta i l Cons Ni l )
ok
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3.1 Sigma Type
The PTS system is extremely powerful even without Sigma type. But we can
encode Sigma type similar how we encode Prod tuple pair in Bohm encoding.
Let’s formulate Sigma type as an inductive type in higher language.
data Sigma (A: Type ) (P: A −> Type) (x : A) : Type =

( i n t r o : P x −> Sigma A P)

The Sigma-type with its eliminators appears as example in Aaron Stump
[11]. Here we will show desugaring to Henk.
−− Sigma/@

\ (A: * )
−> \ (P: A −> * )
−> \ (n : A)
−> \/ ( Ex i s t s : * )
−> \/ ( In t ro : A −> P n −> Ex i s t s )
−> Ex i s t s

−− Sigma/ In t ro
\ (A: * )

−> \ (P: A −> * )
−> \ (x : A)
−> \ (y : P x )
−> \ ( Ex i s t s : * )
−> \ ( In t ro : \/ (x :A) −> P x −> Ex i s t s )
−> In t ro x y

−− Sigma/ f s t
\ (A: * )

−> \ (B: A −> * )
−> \ (n : A)
−> \ (S : #Sigma/@ A B n)
−> S A ( \ (x : A) −> \ (y : B n) −> x )

−− Sigma/snd
\ (A: * )

−> \ (B: A −> * )
−> \ (n : A)
−> \ (S : #Sigma/@ A B n)
−> S (B n) ( \ (_: A) −> \ (y : B n) −> y )

> om: f s t (om: e ra s e (om: norm(om: a ("#Sigma/ t e s t . f s t " ) ) ) ) .
{{λ , { ’ Succ ’ , 0 }} ,
{any ,{{λ , { ’ Zero ’ , 0}} , { any , { var , { ’ Zero ’ ,0}}}}}}

For using Sigma type for Logic purposes one should change the home Uni-
verse of the type to Prop. Here it is:
data Sigma (A: Prop ) (P: A −> Prop ) : Prop =

( i n t r o : ( x :A) (y :P x ) −> Sigma A P)
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3.2 Equ Type
Another example of expressiveness is Equality type a la Martin-Löf.
data Equ (A: Type ) : A −> A −> Type :=

( r e f l ( a : A) : Equ A a a )

−− Equ/@
\ (A: * )

−> \ (x : A)
−> \ (y : A)
−> \/ (Equ : A −> A −> * )
−> \/ ( Re f l : \/ ( z : A) −> Equ z z )
−> Equ x y

−− Equ/ Re f l
\ (A: * )

−> \ (x : A)
−> \ (Equ : A −> A −> * )
−> \ ( Re f l : \/ ( z : A) −> Equ z z )
−> Ref l x

You cannot construct a lambda that will check different values of A type is
they are equal, however, you may want to use built-in definitional equality and
normalization feature of type checker to actually compare two values:
> om: p r i n t (om: type (

om: a ( " ( \\ ( z : #Equ/@ #Nat/@ #Nat/One #Nat/One) −> #Prop/True )"++
" (#Equ/ Re f l #Nat/@ (#Nat/Succ #Nat/Zero ) ) " ) ) ) .

\/ (True : * 0)
−> \/ ( In t ro : True )
−> True
ok

> om: p r i n t (om: type (
om: a ( " ( \\ ( z : #Equ/@ #Nat/@ #Nat/One #Nat/One) −> #Prop/True )"++

" (#Equ/ Re f l #Nat/@ #Nat/Zero ) " ) ) ) .
** except ion e r r o r : no match o f r i g h t hand s i d e value

{ er ro r , {"==" ,
{app ,{{ var , { ’ Succ ’ , 0 }} , { var , { ’ Zero ’ , 0}}}} ,
{var , { ’ Zero ’ , 0}}}}
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3.3 Effect Type System
This work is expected to compile to a limited number of target platforms. For
now, Erlang, Haskell, and LLVM are awaiting. Erlang version is expected to
be used both on LING and BEAM Erlang virtual machines. This language
allows you to define trusted operations in System F and extract this routine to
Erlang/OTP platform and plug as trusted resources. As the example, we also
provide infinite coinductive process creation and inductive shell that linked to
Erlang/OTP IO functions directly.

IO protocol. We can construct in pure type system the state machine based
on (co)free monads driven by IO/IOI protocols. Assume that String is a List
Nat (as it is in Erlang natively), and three external constructors: getLine, put-
Line and pure. We need to put correspondent implementations on host platform
as parameters to perform the actual IO.
St r ing : Type = L i s t Nat
data IO : Type =

( getL ine : ( S t r ing −> IO) −> IO)
( putLine : S t r ing −> IO)
( pure : ( ) −> IO)

17



3.3.1 Infinity I/O Type

Infinity I/O Type Spec.
−− IOI/@: ( r : U) [ x : U] [ [ s : U] −> s −> [ s −> #IOI/F r s ] −> x ] x

\ ( r : * )
−> \/ (x : * )
−> ( \/ ( s : * )

−> s
−> ( s −> #IOI/F r s )
−> x )

−> x

−− IOI/F
\ ( a : * )

−> \ ( State : * )
−> \/ (IOF : * )
−> \/ ( PutLine_ : #IOI/data −> State −> IOF)
−> \/ ( GetLine_ : (#IOI/data −> State ) −> IOF)
−> \/ ( Pure_ : a −> IOF)
−> IOF

−− IOI/MkIO
\ ( r : * )

−> \ ( s : * )
−> \ ( seed : s )
−> \ ( s tep : s −> #IOI/F r s )
−> \ (x : * )
−> \ (k : f o r a l l ( s : * ) −> s −> ( s −> #IOI/F r s ) −> x )
−> k s seed step

−− IOI/data
#L i s t /@ #Nat/@

18



Infinite I/O Sample Program.
−− Morte/ c o r e cu r s i v e
( \ ( r : * 1)
−> ( ( ( (#IOI/MkIO r ) (#Maybe/@ #IOI/data ) ) (#Maybe/Nothing #IOI/data ) )

( \ (m: (#Maybe/@ #IOI/data ) )
−> ( ( ( ( (#Maybe/maybe #IOI/data ) m) ( (#IOI/F r ) (#Maybe/@ #IOI/data ) ) )

( \ ( s t r : #IOI/data )
−> ( ( ( (#IOI/putLine r ) (#Maybe/@ #IOI/data ) ) s t r )

(#Maybe/Nothing #IOI/data ) ) ) )
( ( (#IOI/ getLine r ) (#Maybe/@ #IOI/data ) )
(#Maybe/ Just #IOI/data ) ) ) ) ) )

Erlang Coinductive Bindings.
copure ( ) −>

fun (_) −> fun ( IO) −> IO end end .

cogetL ine ( ) −>
fun ( IO) −> fun (_) −>

L = ch : l i s t ( i o : get_l i n e ( "> " ) ) ,
ch : ap ( IO , [ L ] ) end end .

coputLine ( ) −>
fun (S) −> fun ( IO) −>

X = ch : u n l i s t (S ) ,
i o : put_chars ( " : "++X) ,
case X o f "0\n" −> l i s t ( [ ] ) ;

_ −> corec ( ) end end end .

co rec ( ) −>
ap ( ’Morte ’ : c o r e cu r s i v e ( ) ,

[ copure ( ) , cogetL ine ( ) , coputLine ( ) , copure ( ) , l i s t ( [ ] ) ] ) .

> om_ext r a c t : e x t r a c t ( " pr iv /normal/ IOI " ) .
ok
> Active : module loaded : { re loaded , ’ IOI ’ }

> om: corec ( ) .
> 1
: 1
> 0
: 0
#Fun<L i s t . 3 .113171260>
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3.3.2 I/O Type

I/O Type Spec.
−− IO/@

\ ( a : * )
−> \/ ( IO : * )
−> \/ ( GetLine_ : (#IO/data −> IO) −> IO)
−> \/ ( PutLine_ : #IO/data −> IO −> IO)
−> \/ ( Pure_ : a −> IO)
−> IO

−− IO/ rep l i cateM
\ (n : #Nat/@)

−> \ ( i o : #IO/@ #Unit/@)
−> #Nat/ f o l d n (#IO/@ #Unit/@)

(#IO/ [>>] i o )
(#IO/pure #Unit/@ #Unit/Make)

Guarded Recursion I/O Sample Program.
−− Morte/ r e c u r s i v e
( (#IO/ rep l i cateM #Nat/Five )
( ( ( (#IO/ [>>=] #IO/data ) #Unit/@) #IO/ getLine ) #IO/putLine ) )
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Erlang Inductive Bindings.
pure ( ) −>

fun ( IO) −> IO end .

getL ine ( ) −>
fun ( IO) −> fun (_) −>

L = ch : l i s t ( i o : get_l i n e ( "> " ) ) ,
ch : ap ( IO , [ L ] ) end end .

putLine ( ) −>
fun (S) −> fun ( IO) −>

i o : put_chars ( " : "++ch : u n l i s t (S ) ) ,
ch : ap ( IO , [ S ] ) end end .

r e c ( ) −>
ap ( ’Morte ’ : r e c u r s i v e ( ) ,

[ getL ine ( ) , putLine ( ) , pure ( ) , l i s t ( [ ] ) ] ) .

Here is example of Erlang/OTP shell running recursive example.
> om: rec ( ) .
> 1
: 1
> 2
: 2
> 3
: 3
> 4
: 4
> 5
: 5
#Fun<L i s t .28 .113171260>

21



4 Inductive Type System
As was shown by Herman Geuvers [12] the induction principle is not derivable
in second-order dependent type theory. However there a lot of ways doing this.
For example, we can build in induction principal into the core for every de-
fined inductive type. We even can allow recursive type check for only terms of
induction principle, which have recursion base — that approach was success-
fully established by Peng Fu and Aaron Stump [11]. In any case for derivable
induction principle in Henk we need to have fixpoint somehow in the core.

So-called Calculus of Inductive Constructions [6] is used as a top language
on top of PTS to reason about inductive types. Here we will show you a sketch
of such inductive language model which intended to be a language extension to
PTS system. CIC is allowing fixpoint for any terms, and base checking should
be performed during type checking such terms.

Our future top language Christine 5 is a general-purpose functional lan-
guage with Π and Σ types, recursive algebraic types, higher order functions,
corecursion, and a free monad to encode effects. It compiles to a small MLTT
core of dependent type system with inductive types and equality. It also has an
Id-type (with its recursor) for equality reasoning, case analysis over inductive
types.

4.1 BNF

<> : := #opt ion
[ ] : := #l i s t
| : := #sum
1 : := #unit
I : := #i d e n t i f i e r
U : := Type < #nat >
T : := 1 | ( I : O ) T
F : := 1 | I : O = O , F
B : := 1 | [ | I [ I ] → O ]
O : := I | ( O ) |

U | O → O | O O
| fun ( I : O ) → O | f s t O
| snd O | id O O O
| J O O O O O | l e t F in O
| ( I : O ) * O | ( I : O ) → O
| data I T : O := T | record I T : O := T
| case O B

5https://christine.groupoid.space
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4.2 AST
The AST of higher language Christine is formally defined using itself. Here
you can find telescopes (context lists), split and its branches, inductive data
definitions.

data t e l e (A: U) = emp | t e l (n : name) (b : A) ( t : t e l e A)
data branch (A: U) = br (n : name) ( args : l i s t name) ( term : A)
data l a b e l (A: U) = l ab (n : name) ( t : t e l e A)
data ind

= s t a r (n : nat )
| var (n : name) ( i : nat )
| app ( f a : ind )
| lambda (x : name) (d c : ind )
| p i ( x : name) (d c : ind )
| sigma (n : name) ( a b : ind )
| arrow (d c : ind )
| pa i r ( a b : ind )
| f s t (p : ind )
| snd (p : ind )
| id ( a b : ind )
| i d pa i r ( a b : ind )
| i d e l im ( a b c d e : ind )
| data_ (n : name) ( t : t e l e ind ) ( l a b e l s : l i s t ( l a b e l ind ) )
| case (n : name) ( t : ind ) ( branches : l i s t ( branch ind ) )
| c t o r (n : name) ( args : l i s t ind )

The Erlang version of parser encoded with OTP library yecc which im-
plements LALR-1 grammar generator. This version resembles the model and
slightly based on BNF from Per repository 6.

4.3 Inductive Type Encoding
There are a number of inductive type encodings: 1) Commutative square encod-
ing of F-algebras by Hinze, Wu [14]; 2) Inductive-recursive encoding, algebraic
type of algebraic types, inductive family encoding by Dagand [15]; 3) Encod-
ing with motives inductive-inductive definition, also with inductive families, for
modeling quotient types by Altenkirch, Kaposi [16]; 4) Henry Ford encoding or
encoding with Ran,Lan-extensions by Hamana, Fiore [17]; 5) Church-compatible
Bohm-Berarducci encoding Bohm, Berarducci [13]. Om is shipped with base li-
brary in Church encoding and we already gave the example of IO system encoded
with runtime linkage. We give here simple calculations behind this theory.

6https://github.com/groupoid/per/tree/main/src/erlang/src
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4.4 Polynomial Functors
Least fixed point trees are called well-founded trees. They encode polynomial
functors.

Natural Numbers: µ X → 1 +X
List A: µ X → 1 +A×X
Lambda calculus: µ X → 1 +X ×X +X
Stream: ν X → A×X
Potentialy Infinite List A: ν X → 1 +A×X
Finite Tree: µ X → µ Y → 1 +X × Y = µ X = List X

As we know there are several ways to appear for a variable in a recursive
algebraic type. Least fixpoint is known as a recursive expression that has a
base of recursion In Chuch-Bohm-Berarducci encoding type are store as non-
recursive definitions of their right folds. A fold in this encoding is equal to id
function as the type signature contains its type constructor as parameters to a
pure function.

4.5 List Example
The data type of lists over a given set A can be represented as the initial algebra
(µLA, in) of the functor LA(X) = 1 + (A × X). Denote µLA = List(A). The
constructor functions nil : 1 → List(A) and cons : A× List(A) → List(A) are
defined by nil = in ◦ inl and cons = in ◦ inr, so in = [nil, cons]. Given any
two functions c : 1 → C and h : A × C → C, the catamorphism f = L[c, h]M :
List(A) → C is the unique solution of the simultaneous equations:{

f ◦ nil = c

f ◦ cons = h ◦ (id× f)

where f = foldr(c, h). Having this the initial algebra is presented with
functor µ(1+A×X) and morphisms sum [1 → List(A), A×List(A) → List(A)]
as catamorphism. Using this encoding the base library of List will have following
form:


list = λ ctor → λ cons→ λ nil → ctor

cons = λ x → λ xs→ λ list→ λ cons→ λ nil → cons x (xs list cons nil)

nil = λ list→ λ cons→ λ nil → nil

Here traditionally we show the List definition in higher language and its
desugared version in Henk language.

24



data L i s t : (A: * ) → * :=
(Cons : A → l i s t A → l i s t A)
( Ni l : l i s t A)

−− L i s t /@
\ (A : * )

−> \/ ( L i s t : * )
−> \/ (Cons : \/ (Head : A) −> \/ ( Ta i l : L i s t ) −> L i s t )
−> \/ ( Ni l : L i s t )
−> L i s t

−− L i s t /Cons
\ (A: * )

−> \ (Head : A)
−> \ ( Ta i l :

\/ ( L i s t : * )
−> \/ (Cons : \/ (Head : A) −> \/ ( Ta i l : L i s t ) −> L i s t )
−> \/ ( Ni l : L i s t )
−> L i s t )

−> \ ( L i s t : * )
−> \ (Cons :

\/ (Head : A)
−> \/ ( Ta i l : L i s t )
−> L i s t )

−> \ ( Ni l : L i s t )
−> Cons Head ( Ta i l L i s t Cons Ni l )

−− L i s t / Ni l
\ (A: * )

−> \ ( L i s t : * )
−> \ (Cons :

\/ (Head : A)
−> \/ ( Ta i l : L i s t )
−> L i s t )

−> \ ( Ni l : L i s t )
−> Ni l

record l i s t s : (A B: * ) :=
( l en : l i s t A → i n t e g e r )
( (++) : l i s t A → l i s t A → l i s t A)
(map : (A → B) → ( l i s t A → l i s t B) )
( f i l t e r : (A → bool ) → ( l i s t A → l i s t A) )


foldr = L[f ◦ nil, h]M, f ◦ cons = h ◦ (id× f)

len = L[zero, λ a n→ succ n]M
(++) = λ xs ys→ L[λ(x) → ys, cons]M(xs)
map = λ f → L[nil, cons ◦ (f × id)]M

len = foldr (λ x n→ succ n) 0

(++) = λ ys→ foldr cons ys

map = λ f → foldr (λx xs→ cons (f x) xs) nil

filter = λ p→ foldr (λx xs→ if p x then cons x xs else xs) nil

foldl = λ f v xs = foldr (λ xg → (λ→ g (f a x))) id xs v
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4.6 Base Library
The base library includes basic type-theoretical building blocks starting from
Unit, Bool, Either, Maybe, Nat, List and IO. Here some examples how it
looks like. The full listing of Base Library folder is available at Henk GitHub
repository7.

data Nat : Type :=
( Zero : Unit → Nat )
( Succ : Nat → Nat )

data L i s t (A: Type ) : Type :=
( Ni l : Unit → L i s t A)
(Cons : A → L i s t A → L i s t A)

record St r ing : L i s t Nat := L i s t . Ni l

data IO : Type :=
( getL ine : ( S t r ing → IO) → IO)
( putLint : S t r ing → IO)
( pure : ( ) → IO)

record IO : Type :=
( data : S t r ing )
( [>>= ] : . . . )

r ecord Morte : Type :=
( r e c u r s i v e : IO . rep l i cateM

Nat . Five ( IO . [>>=] IO . data Unit
IO . getL ine IO . putLine ) )

4.7 Measurements
The underlying Henk type checker and compiler is a target language for higher
level languages. The overall size of Henk language with extractor to Erlang is
265 lines of code.

Табл. 2: Compiler Passes
Module LOC Description
om_tok 54 LOC Handcoded Tokenizer
om_parse 81 LOC Inductive AST Parser
om_type 60 LOC Term normalization and typechecking
om_erase 36 LOC Delete information about types
om_extract 34 LOC Extract Erlang Code

7http://github.com/groupoid/henk
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5 Conclusion
We have proposed a modified version of CoC, also known as pure type system,
with predicative and impredicative switchable infinitary hierarchies. This system
is known to be consistent, supports strong normalization and resembles the type
system which is the same as foundations of modern provers, like Coq, Lean,
Agda.

Discoveries. During this investigation were made following discoveries: 1)
baning recursion caused impossibility of encoding a class of theorems based on
induction principle. As was shown by Peng Fu, Aaron Stump [9], the only needed
ingredient for induction in CoC is Self-Type, weak form of fixpoint recursion in
the core. 2) however for running applications at runtime it is enough System F
programs or Dependent Types without Fixpoint. So we can prove properties of
these programs in higher languages with fixpoint (and thus induction) and then
erase theorems from a specification and convert runtime parts of the specification
into Henk with later extraction to any functional language. 2) there are a lot
of theorems, that could be expressed without fixpoint, such as theorems from
higher order logic. 3) this system could be naturally translated into untyped
lambda interpreters.

Advantages over existing pure languages. 1) refined version of type
checker and the clean implementation in 265 LOC. 2) supporting both predica-
tive and impredicative hierarchies. 3) comparing to other languages, Henk is
much faster on big terms. 4) Henk is a production language.

Scientific and Production usage. 1) The language could be used as a
trusted core for certification sensitive parts of applications, such as in finance,
math or other domains with the requirement for totality. 2) This work could
be used as embeddable runtime library. 3) In the academia Henk could be
used as teaching instrument for logic, type systems, lambda calculus, functional
languages.

Further research perspective. 1) Extend the host languages from Erlang
to other languages, like Rust and OCaml. 2) Build a theory of compilation and
erasing from higher languages to Henk. 3) Build a certified interpreter (replace
Erlang) in future higher level language. 4) Add General Induction Principle to
Henk in future language called Frank. 5) Add Sigma and Equality to Frank
in future language called Christine.
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Анотацiя

This article develops a specialized framework for proving strong nor-
malization in the Calculus of Constructions (CoC) and the Calculus of
Inductive Constructions (CIC). Building on Girard’s normalization frame-
work, we adapt neutral terms, elimination contexts, and reducibility can-
didates to handle dependent types, universes, inductive types, and general
induction. The framework is formalized with definitions, lemmas, and a
proof of strong normalization, explicitly addressing the complexities of
general induction. Applications to Coq’s type theory are discussed, em-
phasizing the framework’s modularity and robustness.

7 Introduction to Frank
The Calculus of Constructions (CoC) [15] is a dependently typed lambda calcu-
lus with impredicative universes, forming the core of many proof assistants. The
Calculus of Inductive Constructions (CIC) [5] extends CoC with inductive types
and general induction principles, enabling expressive data structures and proofs,
as seen in Coq. Strong normalization, ensuring that every well-typed term re-
duces to a normal form in finitely many steps, is essential for the consistency of
these systems.

The Riba’s work Toward a General Rewriting-Based Framework for Re-
ducibility [1], provides a unified approach to reducibility proofs using rewriting
relations and elimination contexts. This article presents a specialized framework
for CoC and CIC, adapting Girard concepts to their dependent types, univers-
es, inductive types, and the general induction principle of CIC. We formalize
neutral terms, elimination contexts, and reducibility candidates, proving strong
normalization and addressing the complexities of general induction. The frame-
work’s modularity makes it suitable for Coq and extensible to other dependently
typed systems.
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8 Syntax
We define the syntax for CoC and CIC, including the general induction principle.
The set of terms T in CoC and CIC is defined as:

t ::= x | Sort s | Π(.x : A).B | λx : A.b | f a

| Ind(I : A){c1 : C1, . . . , cn : Cn} | Constr(i, I, t1, . . . , tm) | case(t, I, P, b1, . . . , bn)

where: - x is a variable, - Sort s represents universes (s = Prop,Typei), -
Π(.x : A).B is a dependent function type, - λx : A.b is a lambda abstraction, -
f a is an application, - Ind(I : A){c1 : C1, . . . , cn : Cn} defines an inductive type
I with constructors ci : Ci, - Constr(i, I, t1, . . . , tm) is the i-th constructor of I,
- case(t, I, P, b1, . . . , bn) is a dependent case expression for general induction on
I.

CoC includes only the first five constructs (x, Sort,Π, .λ, . ), while CIC adds
inductive types, constructors, and case expressions.

9 Semantics
Here we define typing rules, and rewriting relations for CoC and CIC, including
the general induction principle.

10 Properties

10.1 Rewriting Relation
The rewriting relation →⊆ T × T includes: - Beta-reduction: (λx : A.b) a →
[x 7→ a]b. - Inductive reduction (iota-reduction): For an inductive type Ind(I :
A){c1 : C1, . . . , cn : Cn}, if t = Constr(i, I, t1, . . . , tm), then:

case(t, I, P, b1, . . . , bn) → bi t1 . . . tm

where bi is the branch corresponding to constructor ci.
A term t is strongly normalizing if every reduction sequence starting from t is

finite. Typing judgments are of the form Γ ⊢ t : A, where Γ = [x1 : A1, . . . , xn :
An] is a context.

10.2 General Induction in CIC
The general induction principle (dependent elimination) allows reasoning about
inductive types with dependent predicates. For an inductive type Ind(I : A){c1 :
C1, . . . , cn : Cn}, the case expression case(t, I, P, b1, . . . , bn) has type P t, where:
- P : Π(.x : I).Sort s is a dependent predicate, - Each branch bi : Π(.y1 :
T1). . . .Π(.ym : Tm).P Constr(i, I, y1, . . . , ym) corresponds to constructor ci.

This principle generalizes simple pattern matching by allowing the result
type to depend on the scrutinized term t.
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10.3 Neutral Terms
Neutral terms are defined to exclude terms that trigger immediate reductions,
accommodating both beta- and iota-reductions in CIC.

Definition 1 (Neutral Terms). A term t ∈ T is neutral, denoted t ∈ N , if it is
not a lambda abstraction (λx : A.b) or a constructor term (Constr(i, I, t1, . . . , tm)).
Formally:

N = {t ∈ T | t = x or t = Sort s or t = Π(.x : A).B or t = f a or

t = case(t′, I, P, b1, . . . , bn) where t′ /∈ Constr}

Case expressions are neutral unless their scrutinee is a constructor, reflecting
the iota-reduction rule [1].

10.4 Elimination Contexts
Elimination contexts are extended to handle general induction, capturing the
reduction behavior of case expressions.

Definition 2 (Elimination Contexts). An elimination context E ∈ E is defined
inductively:

E ::= [] | E t | case(E, I, P, b1, . . . , bn), t, bi ∈ T

The application E[t] is: - [][t] = t, - E u[t] = E[t]u, - case(E, I, P, b1, . . . , bn)[t] =
case(E[t], I, P, b1, . . . , bn).

A set E is adequate if: 1. Closure under composition: If E1, E2 ∈ E , then
E1[E2] ∈ E . 2. Stability under reduction: If E[t] → t′, then either t′ = E′[t]
for some E′ ∈ E , or t′ ∈ N , or t′ = Constr(i, I, t1, . . . , tm).

The inclusion of dependent case expressions ensures that general induction
is modeled correctly [2].
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10.5 Reducibility Candidates
Reducibility candidates are defined to ensure strong normalization, accommo-
dating dependent types, universes, and inductive types with general induction.

Definition 3 (Reducibility Candidates). For a type A ∈ A, a set RA ⊆ T is a
reducibility candidate if:

1. Strong normalization: If t ∈ RA, then t is strongly normalizing.

2. Closure under reduction: If t ∈ RA and t→ t′, then t′ ∈ RA.

3. Neutral terms: If t ∈ N and for all t→ t′, t′ ∈ RA, then t ∈ RA.

4. Dependent types: If A = Π(.x : B).C, then t ∈ RA if for all u ∈ RB ,
t u ∈ R[x 7→u]C .

5. Universes: If A = Sort s, then RA contains all strongly normalizing terms
of type s.

6. Inductive types: If A = Ind(I : A′), then RA contains all terms t such
that for any case(t, I, P, b1, . . . , bn), the result is in RP t.

For inductive types, the reducibility candidate ensures that terms behave
correctly under general induction, reflecting the dependent nature of case ex-
pressions [2].
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10.6 Strong Normalization for CoC and CIC
We prove strong normalization using the adapted reducibility framework, ex-
plicitly handling general induction.

Theorem 1 (Strong Normalization). For any context Γ and term t, if Γ ⊢ t : A,
then t ∈ RA, and thus t is strongly normalizing.

Proof. The proof proceeds by induction on the typing derivation Γ ⊢ t : A.
1. Case: t = x If Γ ⊢ x : A, then (x : A) ∈ Γ. Since x ∈ N and has no

reductions, x RadiolabelledRA.
2. Case: t = Sort s If Γ ⊢ Sort s : Sort s′, then Sort s ∈ N and is irreducible,

so Sort s ∈ RSort s′ .
3. Case: t = Π(.x : A).B If Γ ⊢ A : Sort s1, Γ, x : A ⊢ B : Sort s2, then

Γ ⊢ Π(.x : A).B : Sort s. By induction, A ∈ RSort s1 , B ∈ RSort s2 . Since
Π(.x : A).B ∈ N , it is in RSort s if all reducts are, which holds trivially.

4. Case: t = λx : A.b If Γ ⊢ A : Sort s, Γ, x : A ⊢ b : B, then Γ ⊢ λx :
A.b : Π(.x : A).B. By induction, for all u ∈ RA, [x 7→ u]b ∈ R[x 7→u]B . Thus,
(λx : A.b)u→ [x 7→ u]b ∈ R[x7→u]B , so λx : A.b ∈ RΠ(.x:A).B .

5. Case: t = f a If Γ ⊢ f : Π(.x : A).B, Γ ⊢ a : A, then Γ ⊢ f a : [x 7→ a]B.
By induction, f ∈ RΠ(.x:A).B , a ∈ RA. Thus, f a ∈ R[x 7→a]B .

6. Case: t = Ind(I : A){c1 : C1, . . . , cn : Cn} If Γ ⊢ A : Sort s, and each
constructor ci : Ci is well-typed, then Γ ⊢ I : A. By induction, A ∈ RSort s, and
each Ci ∈ RSort si . Thus, I ∈ RA.

7. Case: t = Constr(i, I, t1, . . . , tm) If Γ ⊢ Constr(i, I, t1, . . . , tm) : I u1 . . . uk,
then each tj ∈ RTj

by induction. Although Constr is not neutral, its arguments
are reducible, and any case on Constr reduces to a branch in R, ensuring t ∈
RI u1...uk

.
8. Case: t = case(t′, I, P, b1, . . . , bn) If Γ ⊢ t′ : I u1 . . . uk, Γ ⊢ P : Π(.x :

I).Sort s, and each branch bi : Π(.y1 : T1). . . .Π(.ym : Tm).P Constr(i, I, y1, . . . , ym),
then Γ ⊢ case(t′, I, P, b1, . . . , bn) : P t′. By induction: - t′ ∈ RI u1...uk

, - P ∈
RΠ(.x:I).Sort s, - Each bi ∈ RΠ(.y1:T1)....Π(.ym:Tm).P Constr(i,I,y1,...,ym). If t′ = Constr(i, I, t1, . . . , tm),
then:

case(t′, I, P, b1, . . . , bn) → bi t1 . . . tm

Since bi is reducible and each tj ∈ RTj
, the result is in RP Constr(i,I,t1,...,tm).

If t′ ∈ N , the case expression is neutral, and all its reducts are in RP t′ by
induction. Thus, t ∈ RP t′ .

Since RA contains only strongly normalizing terms, t ∈ RA implies t is
strongly normalizing [1, 2].

Compared to other normalization proofs: - Girard’s Candidates: Effective
for CoC but less modular for CIC’s inductive types and general induction [14].
- Werner’s Proof: Specific to CIC, addressing general induction but less general
for rewriting [2]. - Normalization by Evaluation (NbE): Semantic and efficient
but complex for general induction [3].
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11 Conclusion
This specialized framework extends Riba’s rewriting-based reducibility approach
to prove strong normalization for CoC and CIC, explicitly incorporating the
general induction principle of CIC. By formalizing neutral terms, elimination
contexts, and reducibility candidates tailored to dependent types, universes,
inductive types, and dependent case expressions, it provides a robust tool for
Coq’s type theory. The framework’s modularity supports extensions like universe
polymorphism and guarded recursion, making it a versatile foundation for future
research in dependently typed systems.
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Issue XIX: Modal Homotopy Type System

М.Е. Сохацький 1
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Анотацiя

Here is presented a reincarnation of cubicaltt called Anders.
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12 Introduction to Anders
Anders is a Modal HoTT proof assistant based on: classical MLTT-80 [6] with
0, 1, 2, W types; CCHM [11] in CHM [2] flavour as cubical type system with
hcomp/transp operations; HTS [8] strict equality on pretypes; infinitisemal [1]
modality primitives for differential geometry purposes. We tend not to touch
general recursive higher inductive schemes, instead we will try to express as
much HIT as possible through Suspensions, Truncations, Quotients primitives
built into type checker core. Anders also aims to support simplicial types Sim-
plex along with Hopf Fibrations built into core for sphere homotopy groups
processing. This modification is called Dan. Full stack of Groupoid Infinity
languages is given at AXIO/11 homepage.

The HTS language proposed by Voevodsky exposes two different presheaf
models of type theory: the inner one is homotopy type system presheaf that
models HoTT and the outer one is traditional Martin-Löf type system presheaf
that models set theory with UIP. The motivation behind this doubling is to have
an ability to express semisemplicial types. Theoretical work on merging inner
and outer languages was continued in 2LTT [9].

Installation. While we are on our road to Lean-like tactic language, cur-
rently we are at the stage of regular cubical HTS type checker with CHM-style
primitives. You may try it from Github sources: groupoid/anders2 or install
through OPAM package manager. Main commands are check (to check a pro-
gram) and repl (to enter the proof shell).

$ opam install anders

Anders is fast, idiomatic and educational (think of optimized Mini-TT). We
carefully draw the favourite Lean-compatible syntax to fit 200 LOC in Menhir.
The CHM kernel is 1K LOC. Whole Anders compiles under 1 second and checks
all the base library under 1/3 of a second [i5-12400]. Anders proof assistant as
Homotopy Type System comes with its own Homotopy Library3.

13 Syntax
The syntax resembles original syntax of the reference CCHM type checker cubi-
caltt, is slightly compatible with Lean syntax and contains the full set of Cubical
Agda [10] primitives (except generic higher inductive schemes).

Here is given the mathematical pseudo-code notation of the language expres-
sions that come immediately after parsing. The core syntax definition of HTS
language corresponds to the type defined in OCaml module:

Further Menhir BNF notation will be used to describe the top-level language
E parser.

1https://axio.groupoid.space
2https://github.com/groupoid/anders/
3https://anders.groupoid.space/lib/
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cosmos := Uj | Vk

var := var name | hole
pi := Π name E E | λ name E E | E E

sigma := Σ name E E | (E,E) | E.1 | E.2
0 := 0 | ind0 E E E
1 := 1 | ⋆ | ind1 E E E
2 := 2 | 02 | 12 | ind2 E E E

W := W ident E E | sup E E | indW E E
id := Id E | ref E | idJ E

path := Path E | Ei | E @ E
I := I | 0 | 1 | E

∨
E | E

∧
E | ¬E

part := Partial E E | [ (E = I) → E, ... ]
sub := inc E | ouc E | E [ I 7→ E ]
kan := transp E E | hcomp E
glue := Glue E | glue E | unglue E E
Im := Im E | Inf E | Join E | indIm E E

E := cosmos | var | MLTT | CCHM | Im
CCHM := path | I | part | sub | kan | glue
MLTT := pi | sigma | id

Keywords. The words of a top-level language, file or repl, consist of key-
words or identifiers. The keywords are following: module, where, import, option,
def, axiom, postulate, theorem, (, ), [, ], <, >, /, .1, .2, Π, Σ, ,, λ, V,

∨
,∧

, -, +, @, PathP, transp, hcomp, zero, one, Partial, inc, ×, →, :, :=, 7→, U,
ouc, interval, inductive, Glue, glue, unglue.

Indentifiers. Identifiers support UTF-8. Indentifiers couldn’t start with :,
-, →. Sample identifiers: ¬-of-∨, 1→1, is-?, =, $∼]!005x, ∞, x→Nat.

Modules. Modules represent files with declarations. More accurate, BNF
notation of module consists of imports, options and declarations.
menhir

s t a r t <Module . f i l e> f i l e
s t a r t <Module . command> r e p l
r e p l : COLON IDENT exp1 EOF | COLON IDENT EOF | exp0 EOF | EOF
f i l e : MODULE IDENT WHERE l i n e * EOF
path : IDENT
l i n e : IMPORT path+ | OPTION IDENT IDENT | d e c l a r a t i o n s

Imports. The import construction supports file folder structure (without
file extensions) by using reserved symbol / for hierarchy walking.

Options. Each option holds bool value. Language supports following op-
tions: 1) girard (enables U : U); 2) pre-eval (normalization cache); 3) impredica-
tive (infinite hierarchy with impredicativity rule); In Anders you can enable or
disable language core types, adjust syntaxes or tune inner variables of the type
checker.

Declarations. Language supports following top level declarations: 1) axiom
(non-computable declaration that breakes normalization); 2) postulate (alter-
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native or inverted axiom that can preserve consistency); 3) definition (almost
any explicit term or type in type theory); 4) lemma (helper in big game); 5)
theorem (something valuable or complex enough).
axiom isProp (A : U) : U
de f i s S e t (A : U) : U
:= Π ( a b : A) (x y : Path A a b ) , Path (Path A a b) x y

Sample declarations. For example, signature isProp (A : U) of type U could
be defined as normalization-blocking axiom without proof-term or by providing
proof-term as definition.

In this example (A : U), (a b : A) and (x y : Path A a b) are called telescopes.
Each telescope consists of a series of lenses or empty. Each lense provides a set
of variables of the same type. Telescope defines parameters of a declaration.
Types in a telescope, type of a declaration and a proof-terms are a language
expressions exp1.
menhir

i dent : IRREF | IDENT
l en s e : LPARENS ident+ COLON exp1 RPARENS
t e l e s c op e : l e n s e t e l e s c op e
params : t e l e s c op e | [ ]
d e c l a r a t i o n s :

| DEF IDENT params DEFEQ exp1
| DEF IDENT params COLON exp1 DEFEQ exp1
| AXIOM IDENT params COLON exp1

Expressions. All atomic language expressions are grouped by four cate-
gories: exp0 (pair constructions), exp1 (non neutral constructions), exp2 (path
and pi applcations), exp3 (neutral constructions).
menhir

f a c e : LPARENS IDENT IDENT IDENT RPARENS }
part : f a c e+ ARROW exp1 }
exp0 : exp1 COMMA exp0 | exp1 }
exp1 : LSQ separated (COMMA, part ) RSQ }

| LAM te l e s c op e COMMA exp1 | PI t e l e s c op e COMMA exp1
| SIGMA te l e s c op e COMMA exp1 | LSQ IRREF ARROW exp1 RSQ
| LT ident+ GT exp1 | exp2 ARROW exp1
| exp2 PROD exp1 | exp2

The LR parsers demand to define exp1 as expressions that cannot be used
(without a parens enclosure) as a right part of left-associative application for
both Path and Pi lambdas. Universe indicies Uj (inner fibrant), Vk (outer pre-
types) and S (outer strict omega) are using unicode subscript letters that are
already processed in lexer.
menhir

exp2 : exp2 exp3 | exp2 APPFORMULA exp3 | exp3 }
exp3 : LPARENS exp0 RPARENS LSQ exp0 MAP exp0 RSQ }

| HOLE | PRE | KAN | IDJ exp3
| exp3 FST | exp3 SND | NEGATE exp3 | INC exp3
| exp3 AND exp3 | exp3 OR exp3 | ID exp3 | REF exp3
| OUC exp3 | PATHP exp3 | PARTIAL exp3 | IDENT
| IDENT LSQ exp0 MAP exp0 RSQ } | HCOMP exp3
| LPARENS exp0 RPARENS } | TRANSP exp3 exp3
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14 Semantics
The idea is to have a unified layered type checker, so you can disbale/enable any
MLTT-style inference, assign types to universes and enable/disable hierachies.
This will be done by providing linking API for pluggable presheaf modules. We
selected 5 levels of type checker awareness from universes and pure type systems
up to synthetic language of homotopy type theory. Each layer corresponds to
its presheaves with separate configuration for universe hierarchies.
de f lang : U
:= i nduc t i v e { UNI : cosmos → lang

| PI : pure lang → lang
| SIGMA: t o t a l lang → lang
| ID : s t r i c t lang → lang
| PATH: homotopy lang → lang
| GLUE: g lue lang → lang
| INDUCTIVE: w012 lang → lang
}

We want to mention here with homage to its authors all categorical models
of dependent type theory: Comprehension Categories (Grothendieck, Jacobs),
LCCC (Seely), D-Categories and CwA (Cartmell), CwF (Dybjer), C-Systems
(Voevodsky), Natural Models (Awodey). While we can build some transports
between them, we leave this excercise for our mathematical components library.
We will use here the Coquand’s notation for Presheaf Type Theories in terms
of restriction maps.

14.1 Universe Hierarchies
Language supports Agda-style hierarchy of universes: prop, fibrant (U), interval
pretypes (V) and strict omega with explicit level manipulation. All universes
are bounded with preorder

Fibrantj ≺ Pretypesk (1)

in which j, k are bounded with equation:

j < k. (2)

Large elimination to upper universes is prohibited. This is extendable to Agda
model:
de f cosmos : U
:= i nduc t i v e { f i b r a n t : N

| p retypes : N
}

The Anders model contains only fibrant Uj and pretypes Vk universe hier-
archies.
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14.2 Dependent Types
Definition 4 (Type). A type is interpreted as a presheaf A, a family of sets
AI with restriction maps u 7→ u f,AI → AJ for f : J → I. A dependent type
B on A is interpreted by a presheaf on category of elements of A: the objects
are pairs (I, u) with u : AI and morphisms f : (J, v) → (I, u) are maps f : J →
such that v = u f . A dependent type B is thus given by a family of sets B(I, u)
and restriction maps B(I, u) → B(J, u f).

We think of A as a type and B as a family of presheves B(x) varying x : A.
The operation Π(x : A)B(x) generalizes the semantics of implication in a Kripke
model.

Definition 5 (Pi). An element w : [Π(x : A)B(x)](I) is a family of functions
wf : Π(u : A(J))B(J, u) for f : J → I such that (wfu)g = wf g(u g) when
u : A(J) and g : K → J .

de f pure ( lang : U) : U
:= i nduc t i v e { p i : name → nat → lang → lang → pure lang

| lambda : name → nat → lang → lang
| app : lang → lang
}

Definition 6 (Sigma). The set Σ(x : A)B(x) is the set of pairs (u, v) when
u : A(I), v : B(I, u) and restriction map (u, v) f = (u f, v f).

de f t o t a l ( lang : U) : U
:= i nduc t i v e { sigma : name → lang → t o t a l lang

| pa i r : lang → lang
| f s t : lang
| snd : lang
}

The presheaf with only Pi and Sigma is called MLTT-72 [4]. Its internal-
ization in Anders is as follows:
de f MLTT (A : U) : U1

:= Σ (Π−form : Π (B : A → U) , U)
(Π−c to r 1 : Π (B : A → U) , Pi A B → Pi A B)
(Π−e l im 1 : Π (B : A → U) , Pi A B → Pi A B)
(Π−comp1 : Π (B : A → U) ( a : A) ( f : Pi A B) ,

= (B a ) (Π−e l im 1 B (Π−c to r 1 B f ) a ) ( f a ) )
(Π−comp2 : Π (B : A → U) ( a : A) ( f : Pi A B) ,

= ( Pi A B) f (λ ( x : A) , f x ) )
(Σ−form : Π (B : A → U) , U)
(Σ−c to r 1 : Π (B : A → U) ( a : A) (b : B a ) , Sigma A B)
(Σ−e l im 1 : Π (B : A → U) (p : Sigma A B) , A)
(Σ−e l im 2 : Π (B : A → U) (p : Sigma A B) , B ( pr 1 A B p ) )
(Σ−comp1 : Π (B : A → U) ( a : A) (b : B a ) ,

= A a (Σ−e l im 1 B (Σ−c to r 1 B a b ) ) )
(Σ−comp2 : Π (B : A → U) ( a : A) (b : B a ) ,

= (B a ) b (Σ−e l im 2 B (a , b ) ) )
(Σ−comp3 : Π (B : A → U) (p : Sigma A B) ,

= ( Sigma A B) p ( pr 1 A B p , pr 2 A B p ) ) , Unit
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14.3 Path Equality
The fundamental development of equality inside MLTT provers led us to the
notion of ∞-groupoid as spaces. In this way Path identity type appeared in the
core of type checker along with De Morgan algebra on built-in interval type.
de f CCHM ( lang : U) : U
:= i nduc t i v e { pretype (n : nat )

| PathP (_: lang ) | PLam (_: lang ) | PApp ( f a : lang )
| I | 0 | 1 | And ( a b : lang ) | Or ( a b : lang ) | Neg (_: lang )
| Transp ( a b : lang ) | HComp ( a b c d : lang )
| Pa r t i a l (_: lang ) | Part ia lP ( a b : lang ) | System (_: lang )
| Sub ( a b c : lang ) | Inc ( a b : lang ) | Ouc ( : lang )
| Glue ( : lang ) | GlueElem ( a b c : lang ) | Unglue (_: lang )
}

Definition 7 (Cubical Presheaf I). The identity types modeled with another
presheaf, the presheaf on Lawvere category of distributive lattices (theory of De
Morgan algebras) denoted with □ — I : □op → Set.

Definition 8 (Properties of I). The presheaf I: i) has to distinct global elements
0 and 1 (B1); ii) I(I) has a decidable equality for each I (B2); iii) I is tiny so
the path functor X 7→ XI has right adjoint (B3).; iv) I has meet and join
(connections).

Interval Pretypes. While having pretypes universe V with interval and as-
sociated De Morgan algebra (∧, ∨, -, 0, 1, I) is enough to perform DNF normal-
ization and proving some basic statements about path, including: contractability
of singletons, homotopy transport, congruence, functional extensionality; it is
not enough for proving β rule for Path type or path composition.

Generalized Transport. Generalized transport transp adresses first prob-
lem of deriving the computational β rule for Path types:
theorem Pathβ (A : U) ( a : A) (C : D A) (d : C a a ( r e f l A a ) )

: Equ (C a a ( r e f l A a ) ) d ( J A a C d a ( r e f l A a ) )
:= λ (A : U)

( a : A)
(C : Π ( x : A) (y : A) , PathP (<\_> A) x y → U) ,
(d : C a a (<\_> a ) ) ,
<j> transp (<\_> C a a (<\_> a ) ) −j d

Transport is defined on fibrant types (only) and type checker should cover
all the cases Note that transpi (Pathj A v w) φ u0 case is relying on comp
operation which depends on hcomp primitive. Here is given the first part of
Simon Huber equations [3] for transp:
transp i N φ u0 =u0

transp i U φ A =A
transp i (Π ( x : A) , B) φ u0 v =transp i B(x/w) φ (u0 w( i /0) )
transp i (Σ ( x : A) , B) φ u0 =( transp i A φ (u0 . 1 ) , t ransp i B(x/v ) φ (u0 . 2 ) )
transp i ( Pathj v w) φ u0 =<j> compi A [ϕ u0 j , ( j=0) 7→ v , ( j=1) 7→ w] (u0 j )
t ransp i ( Glue [φ 7→ (T,w) ] A) ψ u0 =g lue [ϕ( i /1) 7→ t ’ 1 ] a ’ 1 : B( i /1)
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Partial Elements. In order to explicitly define hcomp we need to specify
n-cubes where some faces are missing. Partial primitives isOne, 1=1 and UIP on
pretypes are derivable in Anders due to landing strict equality Id in V universe.
The idea is that (Partial A r) is the type of cubes in A that are only defined
when IsOne r holds. (Partial A r) is a special version of the function space IsOne
r → A with a more extensional equality: two of its elements are considered
judgmentally equal if they represent the same subcube of A. They are equal
whenever they reduce to equal terms for all the possible assignment of variables
that make r equal to 1.
de f Par t i a l ’ (A : U) ( i : I ) := Pa r t i a l A i
de f isOne : I −> V := Id I 1
de f 1=>1 : isOne 1 := r e f 1
de f UIP (A : V) ( a b : A) (p q : Id A a b) : Id ( Id A a b) p q := r e f p

Cubical Subtypes. For (A : U) (i : I) (Partial A i) we can define subtype
A [ i 7→ u ]. A term of this type is a term of type A that is definitionally equal
to u when (IsOne i) is satisfied. We have forth and back fusion rules ouc (inc v)
= v and inc (outc v) = v. Moreover, ouc v will reduce to u 1=1 when i=1.
de f sub ’ (A : U) ( i : I ) (u : Pa r t i a l A i ) : V := A [ i 7→ u ]
de f inc ’ (A : U) ( i : I ) ( a : A) : A [ i 7→ [ ( i =1) → a ] ] := i n c A i a
de f ouc ’ (A : U) ( i : I ) (u : Pa r t i a l A i ) ( a : A [ i 7→ u ] ) : A := ouc a

Homogeneous Composition. hcomp is the answer to second problem:
with hcomp and transp one can express path composition, groupoid, category
of groupoids (groupoid interpretation and internalization in type theory). One of
the main roles of homogeneous composition is to be a carrier in [higher] inductive
type constructors for calculating of homotopy colimits and direct encoding of
CW-complexes. Here is given the second part of Simon Huber equations [3] for
hcomp:
hcompi N [ϕ 7→ 0 ] 0 =0
hcompi N [ϕ 7→ S u ] (S u0 ) =S (hcompi N [ϕ 7→ u ] u0 )
hcompi U [ϕ 7→ E] A =Glue [ϕ 7→ (E( i /1) , equiv i E( i /1− i ) ) ] A
hcompi (Π ( x : A) , B) [ϕ 7→ u ] u0 v =hcompi B(x/v ) [ϕ 7→ u v ] (u0 v )
hcompi (Σ ( x : A) , B) [ϕ 7→ u ] u0 =( v ( i /1) , compi B(x/v ) [ϕ 7→ u . 2 ] u0 . 2 )
hcompi ( Pathj A v w) [ϕ 7→ u ] u0 =<j> hcompi A[ϕ 7→ u j , ( j=0) 7→ v , ( j=1) 7→ w] (u0 j )
hcompi ( Glue [ϕ 7→ (T,w) ] A) [ψ 7→ u ] u0 =g lue [ϕ 7→ u( i / 1 ) ] ( unglue u( i /1) )

14.4 Strict Equality
To avoid conflicts with path equalities which live in fibrant universes strict
equalities live in pretypes universes.
de f s t r i c t ( lang : U) : U
:= i nduc t i v e { Id : name → lang

| r e f : lang → lang
| idJ : lang → lang → lang
}

We use strict equality in HTS for pretypes and partial elements which live in
V. The presheaf configuration with Pi, Sigma and Id is called MLTT-75 [5]. The
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presheaf configuration with Pi, Sigma, Id and Path is called HTS (Homotopy
Type System).

14.5 Glue Types
The main purpose of Glue types is to construct a cube where some faces have
been replaced by equivalent types. This is analogous to how hcomp lets us
replace some faces of a cube by composing it with other cubes, but for Glue
types you can compose with equivalences instead of paths. This implies the
univalence principle and it is what lets us transport along paths built out of
equivalences.
de f g lue ( lang : U) : U
:= i nduc t i v e { Glue : lang → lang → lang

| g lue : lang → lang
| unglue : lang → lang
}

Basic Fibrational HoTT core by Pelayo, Warren, and Voevodsky (2012).
de f f i b e r (A B : U) ( f : A → B) (y : B) : U := Σ ( x : A) , Path B y ( f x )
de f i sEquiv (A B : U) ( f : A → B) : U := Π ( y : B) , i sContr ( f i b e r A B f y )
de f equiv (A B : U) : U := Σ ( f : A →B) , i sEquiv A B f
de f c on t rS i ng l (A : U) ( a b : A) (p : Path A a b)

: Path (Σ ( x : A) , Path A a x ) (a ,<i>a ) (b , p) := <i> (p @ i , <j> p @ i ∨ j )
de f id I sEqu iv (A : U) : i sEquiv A A ( id A)
:= λ ( a : A) , ( ( a ,<i>a ) , λ ( z : f i b e r A A ( id A) a ) , c on t rS i ng l A a z . 1 z . 2 )

de f idEquiv (A : U) : equiv A A := ( id A, i sCont rS ing l A)

The notion of Univalence was discovered by Vladimir Voevodsky as forth
and back transport between fibrational equivalence as contractability of fibers
and homotopical multi-dimentional heterogeneous path equality. The Equiv →
Path type is called Univalence type, where univalence intro is obtained by Glue
type and elim (Path → Equiv) is obtained by sigma transport from constant
map.
de f univ−format ion (A B : U) := equiv A B → PathP (<i> U) A B
def univ−i n t r o (A B : U) : univ−format ion A B := λ ( e : equiv A B) ,

<i> Glue B (∂ i ) [ ( i =0) → (A, e ) , ( i = 1) → (B, idEquiv B) ]
de f univ−e l im (A B : U) (p : PathP (<i> U) A B)

: equiv A B := transp (<i> equiv A (p @ i ) ) 0 ( idEquiv A)
de f univ−computation (A B : U) (p : PathP (<i> U) A B)

: PathP (<i> PathP (<i> U) A B) ( univ−i n t r o A B ( univ−e l im A B p ) ) p
:= <j i> Glue B ( j ∨ ∂ i )

[ ( i = 0) → (A, univ−e l im A B p ) , ( i = 1) → (B, idEquiv B) ,
( j = 1) → (p @ i , univ−e l im (p @ i ) B (<k> p @ ( i ∨ k ) ) ) ]

Similar to Fibrational Equivalence the notion of Retract/Section based Iso-
morphism could be introduced as forth-back transport between isomorphism
and path equality. This notion is somehow cannonical to all cubical systems
and is called Unimorphism here.
de f i so−Form (A B: U) : U1 := i s o A B −> PathP (<i>U) A B
def i so−In t ro (A B: U) : i so−Form A B
:= λ ( x : i s o A B) , i soPath A B x . f x . g x . s x . t
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de f i so−Elim (A B : U) : PathP (<i> U) A B −> i s o A B
:= λ (p : PathP (<i> U) A B) ,

( coe r c e A B p , coe r c e B A (<i> p @ − i ) ,
t rans−1−t rans A B p , λ ( a : A) , <k> trans−t rans−1 A B p a @−k , ⋆)

Orton-Pitts basis for univalence computability (2017):
de f ua (A B : U) (p : equiv A B) : PathP (<i> U) A B := univ−i n t r o A B p
de f ua−β (A B : U) ( e : equiv A B) : Path (A →B) ( t rans A B (ua A B e ) ) e . 1
:= <i> λ ( x : A) , ( id fun=idfun ’ ’ B @ − i )

( id fun=idfun ’ ’ B @ − i ) ( ( id fun=idfun ’ B @ − i ) ( e . 1 x ) ) )

14.6 de Rham Stack
Stack de Rham or Infinitezemal Shape Modality is a basic primitive for proving
theorems from synthetic differential geometry. This type-theoretical framework
was developed for the first time by Felix Cherubini under the guidance of Urs
Schreiber. The Anders prover implements the computational semantics of the
de Rham stack.
de f ι (A : U) ( a : A) : ℑ A := ℑ−un i t a
de f µ (A : U) ( a : ℑ (ℑ A)) := ℑ− j o i n a
de f i s −coreduced (A : U) : U := i sEquiv A (ℑ A) (ι A)
de f ℑ−coreduced (A : U) : i s −coreduced (ℑ A)
:= isoToEquiv (ℑ A) (ℑ (ℑ A)) (ι (ℑ A)) (µ A)

(λ ( x : ℑ (ℑ A) ) , <i>x ) (λ ( y : ℑ A) ,<i>y )
de f ind−ℑβ (A : U) (B : ℑ A →U) ( f : Π ( a : A) , ℑ (B (ι A a ) ) ) ( a : A)

: Path (ℑ (B (ι A a ) ) ) ( ind−ℑ A B f (ι A a ) ) ( f a ) := <i> f a
de f ind−ℑ−const (A B : U) (b : ℑ B) (x : ℑ A)

: Path (ℑ B) ( ind−ℑ A (λ ( i : ℑ A) , B) (λ ( i : A) , b) x ) b := <i> b

Coreduced induction and its β−quation.
de f ℑ− ind (A : U) (B : ℑ A →U) ( c : Π ( a : ℑ A) ,

i s −coreduced (B a ) ) ( f : Π ( a : A) , B (ι A a ) ) ( a : ℑ A) : B a
:= ( c a ( ind−ℑ A B (λ ( x : A) , ι (B (ι A x ) ) ( f x ) ) a ) ) . 1 . 1

de f ℑ− indβ (A : U) (B : ℑ A →U) ( c : Π ( a : ℑ A) ,
i s −coreduced (B a ) ) ( f : Π ( a : A) , B (ι A a ) ) ( a : A)

: Path (B (ι A a ) ) ( f a ) ( (ℑ− ind A B c f ) (ι A a ) )
:= <i> sec−equiv (B (ι A a ) ) (ℑ (B (ι A a ) ) )

(ι (B (ι A a ) ) , c (ι A a ) ) ( f a ) @−i

Geometric Modal HoTT Framework: Infinitesimal Proximity, Formal Disk,
Formal Disk Bundle, Differential.
de f ∼ (X : U) ( a x ’ : X) : U := Path (ℑ X) (ι X a ) (ι X x ’ )
de f D (X : U) ( a : X) : U := Σ (x ’ : X) , ∼ X a x ’
de f in f −prox−ap (X Y : U) ( f : X → Y) (x x ’ : X) (p : ∼ X x x ’ )

: ∼ Y ( f x ) ( f x ’ ) := <i> ℑ−app X Y f (p @ i )
de f T∞ (A : U) : U := Σ ( a : A) , D A a
de f in f −prox−ap (X Y : U) ( f : X → Y) (x x ’ : X) (p : ∼ X x x ’ )

: ∼ Y ( f x ) ( f x ’ ) := <i> ℑ−app X Y f (p @ i )
de f d (X Y : U) ( f : X → Y) (x : X) (ε : D X x)

: D Y ( f x ) := ( f ε . 1 , i n f −prox−ap X Y f x ε . 1 ε . 2 )
de f T∞−map (X Y : U) ( f : X →Y) (τ : T∞ X) : T∞ Y := ( f τ . 1 , d X Y f τ . 1 τ . 2 )
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14.7 Inductive Types
Anders currently don’t support Lean-compatible generic inductive schemes def-
inition. So instead of generic inductive schemes Anders supports well-founded
trees (W-types). Basic data types like List, Nat, Fin, Vec are implemented as
W-types in base library.

• W, 0, 1, 2 basis of MLTT-80 (Martin-Löf)

• General Schemes of Inductive Types (Paulin-Mohring)

14.8 Higher Inductive Types
As for higher inductive types Anders has Three-HIT foundation (Coequaliz-
er, Path Coequalizer and Colimit) to express other HITs. Also there are other
foundations to consider motivated by typical tasks in homotopy (type) theory:

• Coequalizer, Path Coequalizer and Colimit (van der Weide)

• Suspension, Truncation, Quotient (Groupoid Infinity)

• General Schemes of Higher Inductive Types (Cubical Agda)

14.9 Simplicial Types
Modification of Anders with Simplicial types and Hopf Fibrations built intro
the core of type checker is called Dan with following recursive syntax (having
f as Simplecies and coh as Path-coherence functions):
s implex n [ v0 . . vn ] { f 0 , f 1 , . . . , fn | coh i 1 i 2 . . . in } : Simplex

and instantiation example:
de f s∞ : S imp l i c i a l
:= Π ( v e : Simplex ) ,

δ10 =v , δ11 =v , s0 <v ,
δ20 =e ◦ e , s10 <δ20
⊢ ∞ (v , e , δ20 | δ10 δ11 , s0 , δ20 , s10 )
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15 Properties
Soundness and completeness link syntax to semantics. Canonicity, normaliza-
tion, and totality ensure computational adequacy. Consistency and decidability
guarantee logical and practical usability. Conservativity and initiality support
extensibility and universality.

15.1 Soundness and Completeness
Soundness is proven via cubical sets [11, 12, 13].

15.2 Canonicity, Normalization and Totality
Canonicity and normalization hold constructively [14, 15].

15.3 Consistency and Decidability
Consistency follows from the model [16]. Decidability is achieved for type check-
ing [13].

15.4 Conservativity and Initiality
Conservativity and initiality is discussed bu Shulman[18, 17]. Initiality is implicit
in the syntactic construction [12].

16 Conclusion
This paper presents Anders, a proof assistant that reimplements cubicaltt with-
in a Modal Homotopy Type System framework, based on MLTT-80 and CCH-
M/CHM. It integrates HTS strict equality, infinitesimal modalities, and prim-
itives like suspensions or quotients, with the extension adding simplicial types
and Hopf fibrations. Anders offers an efficient, idiomatic system — compiling in
under one second — using a syntax of Lean and semantics of cubicaltt and Cubi-
cal Agda. As a practical refinement of cubicaltt, Anders serves as an accessible
tool for homotopy type theory, with potential for incremental enhancements like
a tactic language.
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Issue XX: Analytical Type System

М.Е. Сохацький 1

1 Нацiональний технiчний унiверситет України
iм. Iгоря Сiкорського

26 листопада 2017

Анотацiя

The formalization of mathematical analysis in proof assistants has ad-
vanced significantly with systems like Lean and Coq, which have mecha-
nized key results in functional analysis, such as Bochner integration, L2

spaces, and the theory of distributions. This article introduces Laurent,
a novel proof assistant built on MLTT-72, a minimal Martin-Löf Type
Theory with Pi and Sigma types, omitting identity types (e.g., Id, J) in
favor of Prop predicates and truncated Sigma types. Laurent embeds ex-
plicit primitives for calculus, measure theory, and set theory with open
sets and topology directly into its core, complemented by a tactics lan-
guage inspired by Lean, Coq, and recent near tactics. Designed to unify
classical and constructive analysis, it targets the mechanization of Laurent
Schwartz’s Théorie des Distributions and Analyse Mathématique along-
side Errett Bishop’s Foundations of Constructive Analysis. We present
its foundational constructs and demonstrate its application to theorems
in sequences, Lebesgue integration, L2 spaces, and distributions, arguing
that its design offers an intuitive yet rigorous approach to analysis, appeal-
ing to classical analysts while preserving constructive precision. Laurent
emerges as a specialized tool for computational mathematics, advancing
the mechanization of functional analysis.
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17 Introduction to Laurent
The mechanization of mathematical theorems has transformed modern math-
ematics, enabling rigorous verification of proofs through computational tools
known as proof assistants. Systems like Lean and Coq have emerged as lead-
ers in this field, leveraging dependent type theory to formalize a wide range of
mathematical domains.

Despite their successes, Lean and Coq often rely on extensive libraries (e.g.,
Lean’s mathlib or Coq’s Mathematical Components) and general-purpose tac-
tics—such as ring, field, or linearith—that, while effective, can feel detached
from the intuitive reasoning of classical analysis. This gap has inspired the devel-
opment of Laurent, a proof assistant tailored for mathematical analysis, func-
tional analysis, and distribution theory. Laurent integrates explicit primitives
for sets, measures, and calculus into its core, paired with a tactics language
akin to Lean and Coq, augmented by recent innovations like near tactics [1].
This design aims to reflect the spirit of classical mathematics while enabling
constructive theorem-proving, offering a specialized tool for researchers in func-
tional analysis.

This article outlines Laurent’s architecture and demonstrates its mecha-
nization of classical and constructive theorems, drawing on examples from se-
quences, Lebesgue integration, and L2 spaces. We target formal mathematics
audience emphasizing computational mathematics and frontier research in func-
tional analysis.

Laurent := MLTT | CALC
MLTT := Cosmos | Var | Forall | Exists

CALC := Base | Set | Q | Mu | Lim
Cosmos := Prop : U0 : U1

Var := var ident | hole
Forall := ∀ ident E E | λ ident E E | E E
Exists := ∃ ident E E | (E,E) | E.1 | E.2
Base := N | Z | Q | R | C | H | O | Vn

Set := Set | SeqEq | And | Or | Complement | Intersect
| Power | Closure | Cardinal
Q := −/∼ | Quot | LiftQ | IndQ

Mu := mu | Measure | Lebesgue | Bochner
Lim := Seq | Sup | Inf | Limit | Sum | Union

18 Lean and Coq in Functional Analysis
Lean, developed by Leonardo de Moura, is built on a dependent type theory
variant of the Calculus of Inductive Constructions (CIC), with a small inference
kernel and strong automation. Its mathematical library, mathlib, includes for-
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malizations of Lebesgue measure, Bochner integration, and L2 spaces, upporting
proofs up to research-level mathematics. Tactics like norm_num and continuity
automate routine steps, though their generality can obscure domain-specific in-
sights.

Both systems, while powerful, prioritize generality over domain-specific effi-
ciency [2]. Laurent addresses this by embedding analysis primitives directly into
its core, inspired by recent advancements in near tactics, which enhance proof
search with contextual awareness.

19 The Laurent Theorem Prover
Laurent is designed to mechanize theorems in classical and constructive analy-
sis with a focus on functional analysis. Its core is built on dependent types—Pi
(functions) and Sigma (pairs)—augmented by explicit primitives for sets, mea-
sures, and calculus operations. Unlike Lean and Coq, where such notions are
library-defined, Laurent’s primitives are native, reducing abstraction overhead
and aligning with classical mathematical notation.

19.1 Basic Constructs and Set Theory
Laurent’s syntax begins with fundamental types: natural numbers (N), integers
(Z), rationals (Q), reals (R), complex numbers (C), quaternions (H), octanions
(O) and n-vectors (Vn) all embedded in the core. Sets are first-class objects,
defined using lambda abstractions. For example:
l e t s e t_a : exp =

Set (Lam ( "x" , Real ,
RealIneq (Gt , Var "x" , Zero ) ) )

represents the set {x : R | x > 0}. Operations like supremum and infimum are
built-in:

sup{x > 0} = +∞,

inf{x > 0} = 0,

computed via Sup set_a and Inf set_a, reflecting the unbounded and bounded-
below nature of the positive reals.

19.2 Measure Theory and Integration
Measure theory is central to functional analysis, and Laurent embeds Lebesgue
measure as a primitive:
l e t i n t e r v a l_a_b ( a : exp ) (b : exp ) : exp =

Set (Lam ( "x" , Real ,
And ( RealIneq ( Lte , a , Var "x ") ,

RealIneq ( Lte , Var "x" , b ) ) ) )

l e t l ebe sgue_measure ( a : exp ) (b : exp ) : exp =

53



Mu ( Real , Power ( Set Real ) , Lam ( "A" , Set Real ,
I f ( RealIneq ( Lte , a , b ) ,

RealOps (Minus , b , a ) ,
I n f i n i t y ) ) )

This defines µ([a, b]) = b − a for a ≤ b, otherwise ∞. The Lebesgue integral is
then constructed:
l e t i n t e g r a l_term : exp =

Lam (" f " , Fo r a l l ( "x" , Real , Real ) , Lam ( "a " , Real , Lam ( "b" , Real ,
Lebesgue (Var " f " , Mu ( Real , Power ( Set Real ) , Lam ( "A" , Set Real ,

I f (And ( RealIneq ( Lte , Var "a " , Var "b") ,
SetEq (Var "A" , i n t e r v a l_a_b (Var "a ") (Var "b " ) ) ) ,

RealOps (Minus , Var "b" , Var "a ") , Zero ) ) ) ,
i n t e r v a l_a_b (Var "a ") (Var "b " ) ) ) ) )

representing
∫
[a,b]

f dµ, with type signature f, a, b : R → R.

19.3 L2 Spaces
The L2 space, critical in functional analysis, is defined as:
l e t l 2_space : exp =

Lam (" f " , Fo r a l l ( "x" , Real , Real ) ,
RealIneq (Lt ,

Lebesgue (Lam ( "x" , Real ,
RealOps (Pow, RealOps (Abs , App (Var " f " , Var "x ") , Zero ) ,
RealOps ( Plus , One , One ) ) ) ,
l ebe sgue_measure Zero I n f i n i t y , i n t e r v a l_a_b Zero I n f i n i t y ) ,

I n f i n i t y ) )

This encodes {f : R → R |
∫∞
0

|f(x)|2 dµ < ∞}, leveraging Laurent’s measure
and integration primitives.

19.4 Sequences and Limits
Laurent mechanizes classical convergence proofs efficiently. Consider the se-
quence an = 1

n :

l e t sequence_a : exp =
Lam ("n" , Nat , RealOps (Div , One , NatToReal (Var "n " ) ) )

l e t l im i t_a : exp =
Limit ( Seq sequence_a , I n f i n i t y , Zero ,

Lam ( "ε " , Real , Lam ( "p" , RealIneq (Gt , Var "ε " , Zero ) ,
Pair ( RealOps (Div , One , Var "ε ") ,

Lam ( "n" , Nat , Lam ( "q" , RealIneq (Gt , Var "n" , Var "N") ,
RealIneq (Lt , RealOps (Abs ,
RealOps (Minus , App ( sequence_a , Var "n") , Zero ) , Zero ) ,

Var "ε " ) ) ) ) ) ) )

This proves limn→∞
1
n = 0, with ∀ε > 0, ∃N = 1

ε such that n > N implies∣∣ 1
n

∣∣ < ε.
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20 Examples of Theorem Mechanization
Laurent’s design excels in mechanizing foundational theorems across differential
calculus, integral calculus, and functional analysis. Below, we present a selection
of classical results formalized in Laurent, showcasing its explicit primitives and
constructive capabilities.

20.1 Taylor’s Theorem with Remainder
Taylor’s Theorem provides an approximation of a function near a point using
its derivatives. If f : R → R is n-times differentiable at a, then:

f(x) =

n−1∑
k=0

f (k)(a)

k!
(x− a)k +Rn(x),

where Rn(x) = o((x− a)n−1) as x→ a.
In Laurent this encodes the theorem’s structure, with diff_k representing

the k-th derivative and ‘remainder‘ satisfying the little-o condition, verifiable
via Laurent’s limit primitives.

20.2 Fundamental Theorem of Calculus
The Fundamental Theorem of Calculus links differentiation and integration. If f
is continuous on [a, b], then F (x) =

∫ x

a
f(t) dt is differentiable, and F ′(x) = f(x):

Laurent’s ‘Lebesgue‘ primitive and ‘diff‘ operator directly capture the inte-
gral and derivative, aligning with classical intuition.

20.3 Lebesgue Dominated Convergence Theorem
In functional analysis, the Dominated Convergence Theorem ensures integral
convergence under domination. If fn → f almost everywhere, |fn| ≤ g, and∫
g < ∞, then

∫
fn →

∫
f : This leverages Laurent’s sequence and measure

primitives, with ‘Limit‘ automating convergence proofs via near tactics.

20.4 Schwartz Kernel Theorem
For distributions, the Schwartz Kernel Theorem states that every continuous
bilinear form B : D(Rn) × D(Rm) → R is represented by a distribution K ∈
D′(Rn×Rm) such that B(ϕ, ψ) = ⟨K,ϕ⊗ψ⟩: This uses Sigma types to pair the
kernel K with its defining property, reflecting Laurent’s support for advanced
functional analysis.

20.5 Banach Space Duality
In Banach spaces, there’s a bijection between closed subspaces of X and X∗ via
annihilators: A 7→ A⊥, B 7→ ⊥B. Laurent formalizes this as:
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l e t b i j e c t i o n_theorem = Π ( Set Real , ( "X" ,
I f ( banach_space (Var "X") ,

And (
Π ( Set (Var "X") , ( "A" ,

I f ( c l o s ed_subspace (Var "X" , Var "A") ,
Id ( Set (Var "X") , Var "A" , pre_ann i h i l a t o r (Var "X" ,

ann i h i l a t o r (Var "X" , Var "A" ) ) ) , Bool ) ) ) ,
Π ( Set ( dual_space (Var "X") ) , ( "B" ,

I f ( c l o s ed_subspace ( dual_space (Var "X") , Var "B") ,
Id ( Set ( dual_space (Var "X") ) , Var "B" , ann i h i l a t o r (Var "X" ,

pre_ann i h i l a t o r (Var "X" , Var "B" ) ) ) , Bool ) ) ) ) ) , Bool ) ) )

This showcases Laurent’s ability to handle normed spaces and duality, critical
in functional analysis.

20.6 Banach-Steinhaus Theorem
The Banach-Steinhaus Theorem ensures uniform boundedness of operators.

If supα∈A ∥Tαx∥Y < ∞ for all x ∈ X, then there exists M such that
∥Tα∥X→Y ≤M :

This uses Laurent’s norm and operator primitives, with near tactics simpli-
fying boundedness proofs.

20.7 de Rham Theorem
The de Rham Theorem relates differential forms and integrals over loops. For
an open Ω ⊂ Rn and a C1 1-form ω, if

∫
γ
ω = 0 for all loops γ, there exists f

such that ω = df :
l e t de_rham_theorem =

Π (Nat , ( "n" ,
Π ( Set (Vec (n , Real , RealOps RPlus , RealOps RMult ) ) , ( "Omega" ,

Π ( one_form Omega n , ( "omega" ,
And ( c1_form Omega n (Var "omega ") ,

And (Π ( loop Omega n , ( "gamma" ,
Id ( Real , i n t e g r a l (Var "omega" , Var "gamma") , ze ro ) ) ) ,

Σ ( ze ro_form Omega , ( " f " , And (
Id ( one_form Omega n , Var "omega" , d i f f e r e n t i a l (Var " f " ) ) ,
Π (Nat , ( "m" , I f (cm_form Omega n (Var "m") (Var "omega ") ,

cm_form Omega n (Var "m") (Var " f " ) , Bool ) ) ) ) ) ) ) ) ) ) ) ) )

This demonstrates Laurent’s capacity for topology and differential geometry,
integrating forms and limits.

These examples highlight Laurent’s versatility, from basic calculus to ad-
vanced functional analysis, leveraging its native primitives and tactics for intu-
itive yet rigorous mechanization.

21 Core Tactics of General Proof Assistant
Laurent’s proof assistant leverages a rich tactics language to mechanize theorems
in functional analysis, blending classical intuition with constructive rigor. Unlike
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general-purpose systems like Lean and Coq, Laurent’s tactics are tailored to the
domain-specific needs of analysis, incorporating explicit primitives for limits,
measures, and algebraic structures. This section outlines key tactics used in
Laurent, including specialized solvers for rings, fields, and linear arithmetic,
and demonstrates their application to functional analysis proofs.

These tactics form the backbone of proof construction, mirroring Coq’s log-
ical framework but optimized for Laurent’s syntax.

21.1 Intro
Introduces variables from universal quantifiers. For a goal ∀x : R, P (x), intro
x yields a new goal P (x) with x in the context.

21.2 Elim
Eliminates existential quantifiers or applies induction (not fully implemented in
the current prototype).

21.3 Apply
Applies a lemma or hypothesis to the current goal (pending full implementa-
tion).

21.4 Exists
Provides a witness for an existential quantifier. For ∃x : R, P (x), exists 0
substitutes x = 0 into P (x).

21.5 Assumption
Closes a goal if it matches a hypothesis or simplifies to a trivial truth (e.g., 0 < ε
when ε > 0 is in context).

21.6 Auto
Attempts to resolve goals using context hypotheses, ideal for trivial cases.

21.7 Split
Splits conjunctive goals (P ∧Q) into subgoals P and Q.

22 Analysis-Specific Tactics of Laurent
For functional analysis, Laurent introduces tactics that exploit its calculus and
measure primitives. These tactics leverage Laurent’s Limit, Lebesgue, and
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RealIneq primitives, reducing manual effort in limit and integration proofs com-
pared to Lean’s library-based approach.

22.1 Limit
Expands limit definitions. For a goal limn→∞ an = L, it generates:

∀ε > 0,∃N : N,∀n > N, |an − L| < ε,

enabling step-by-step convergence proofs. This is crucial for sequences like 1
n →

0.

22.2 Continuity
Unfolds continuity definitions at a point. For a goal continuous_at (f, a), it
generates:

∀ε > 0,∃δ > 0,∀x, |x− a| < δ =⇒ |f(x)− f(a)| < ε,

transforming the target into an ε-δ formulation using Laurent’s RealIneq primi-
tives for inequalities and RealOps for arithmetic operations (e.g., absolute value,
subtraction). This facilitates step-by-step proofs of continuity, such as for the
Fundamental Theorem of Calculus, by exposing the logical structure directly in
the prover’s core, contrasting with Lean’s reliance on library theorems.

22.3 Near
Introduces a neighborhood assumption. Given a goal involving a point a, near
x a adds xnear : R and δx > 0 with |xnear − a| < δx, facilitating local analysis
as in Taylor’s Theorem.

22.4 ApplyLocally
Applies a local property (e.g., from a near assumption) to simplify the goal,
automating steps in proofs like the Schwartz Kernel Theorem.

To handle the algebraic manipulations ubiquitous in functional analysis (e.g.,
norms, integrals), Laurent incorporates solvers inspired by Lean and Coq:

23 Algebraic Solvers
To handle the algebraic manipulations ubiquitous in functional analysis (e.g.,
norms, integrals), Laurent incorporates solvers inspired by Lean and Coq.

Lean’s ring and linarith rely on mathlib, while Coq’s field uses library-
defined fields. Laurent embeds these solvers in its core, alongside analysis tactics,
reducing dependency on external definitions. This design accelerates proofs in
L2 spaces, Banach duality, and distribution theory, aligning with the needs of a
mathematical audience exploring frontier research in computational analysis.
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23.1 Ring
Solves equalities in commutative rings. For example, it verifies:

(f(x) + g(x))2 = f(x)2 + 2f(x)g(x) + g(x)2,

using R’s ring structure. This is implemented via normalization and equality
checking in Laurent’s core.

23.2 Field
Resolves field equalities and inequalities involving division. For

∫∞
0

|f(x)|2 dµ <
∞, field simplifies expressions like:

f(x)2

g(x)2
=

(
f(x)

g(x)

)2

(g(x) ̸= 0),

crucial for quotient manipulations in Banach spaces.

23.3 Big Number Normalization
Automates numerical simplification and equality checking for expressions in-
volving rational numbers and basic functions. For a goal like 2 + 3 = 5 or
| sin(0)| = 0, it evaluates:

norm_num : e 7→ r,

where e is an expression (e.g., 2/3+1/2, ln(1)), and r is either a rational number
(via OCaml’s Num library) or an unevaluated symbolic form. It supports oper-
ations including addition, subtraction, multiplication, division, exponentiation,
absolute value, logarithms, and trigonometric functions, approximating tran-
scendental results to high precision (e.g., 20 decimal places for sin, cos). This
tactic is essential for verifying norm computations, such as ∥f∥22 =

∫
|f(x)|2 dx,

by reducing concrete numerical subgoals in Banach space proofs.

23.4 Inequality Set Predicates
Handles linear arithmetic inequalities. In the Banach-Steinhaus Theorem, it
proves:

∥Tαx∥Y ≤M∥x∥X ,

by resolving linear constraints over R, integrating seamlessly with RealIneq
backed by Z3 SMT solver (morally correct for inequalities).

24 Discussion and Future Directions
Laurent has built-in primitives for streamline proofs in measure theory, inte-
gration, and L2 spaces, while its tactics language ensures flexibility. Compared
to Lean’s library-heavy approach or Coq’s constructive focus, Laurent balances
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classical intuition with formal precision, making it accessible to analysts ac-
customed to paper-based reasoning. Future work includes expanding Laurent’s
tactics repertoire, formalizing advanced theorems (e.g., dominated convergence,
distribution theory).

Hosted at 1, Laurent invites community contributions to refine its role in
computational mathematics.

25 Conclusion
Laurent represents a specialized advancement in theorem mechanization, tai-
lored for classical and constructive analysis. By embedding analysis primitives
and leveraging topological tactics and algebraic solvers, it offers a unique tool
for functional analysts, complementing the broader capabilities of Lean and
Coq. This work underscores the potential of domain-specific proof assistants in
advancing computational mathematics.
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[3] Schwartz, L. Analyse Mathématique, Hermann, Paris, 1967.

[4] Bishop, E. Foundations of Constructive Analysis, McGraw-Hill, New York,
1967.

[5] Bridges, D. Constructive Mathematics: A Foundation for Computable
Analysis, Theoretical Computer Science, 1999, 219 (1-2), pp.95–109.

[6] Booij, A. Analysis in Univalent Type Theory, PhD thesis, University
of Birmingham, 2020. Available at: https://etheses.bham.ac.uk/id/
eprint/10411/7/Booij2020PhD.pdf

[8] Ziemer, W. P., Torres, M. Modern Real Analysis, Springer, New
York, 2017. Available at: https://www.math.purdue.edu/~torresm/
pubs/Modern-real-analysis.pdf

1https://github.com/groupoid/laurent

60



Issue XXI: Super Type System

М.Е. Сохацький 1

1 Нацiональний технiчний унiверситет України
iм. Iгоря Сiкорського

26 листопада 2025

Анотацiя

Here is presented Groupoid Infinity language for TED-K.

26 Introduction to Urs

27 Super Type System

27.1 Bosonic Modality
The ⃝ modality in cohesive type theory projects a type to bosonic parity
(g = 0). For a type A : Ui,g, ⃝A forces the type to be bosonic, aligning with
supergeometry and quantum physics.

In Urs, ⃝ operates on types in graded universes from Graded, with appli-
cations in bosonic quantum fields qubit and supergeometry SmthSet.

27.2 Bose
Definition 9 (Bosonic Modality Formation). The ⃝ modality is a type oper-
ator on graded universes, mapping to bosonic parity:

⃝ :
∏
i:N

∏
g:Grade

Ui,g → Ui,0.

de f boson ic ( i : Nat ) ( g : Grade ) (A : U i g ) : U i 0

Definition 10 (Bosonic Modality Introduction). Applying ⃝ to a type A pro-
duces ⃝A with bosonic parity:

Γ ⊢ A : Ui,g → Γ ⊢ ⃝A : Ui,0.
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Definition 11 (Bosonic Modality Elimination). The eliminator for ⃝A maps
bosonic types to properties in U0:

Ind⃝ :
∏
i:N

∏
g:Grade

∏
A:Ui,g

∏
ϕ:(⃝A)→U0

 ∏
a:⃝A

ϕ a

 →
∏

a:⃝A

ϕ a.

de f boson ic_ind ( i : Nat ) ( g : Grade ) (A : U i g )
( phi : ( boson ic i g A) −> U_0)
(h : Π ( a : boson ic i g A) , phi a )

: Π ( a : boson ic i g A) , phi a

Theorem 2 (Idempotence of Bosonic). The ⃝ modality is idempotent, as it
always projects to bosonic parity:

⃝-idem :
∏
i:N

∏
g:Grade

∏
A:Ui,g

(⃝(⃝A)) = (⃝A).

de f boson ic_idem ( i : Nat ) ( g : Grade ) (A : U i g )
: ( boson ic i 0 ( boson ic i g A) ) = ( boson ic i g A)

Theorem 3 (Bosonic Qubits). For C,H : U0, the type ⃝Qubit(C,H) models
bosonic quantum states:

⃝-qubit :
∏
i:N

∏
g:Grade

∏
C,H:U0

(⃝Qubit(C,H)) : Ui,0.

de f boson ic_qubit ( i : Nat ) ( g : Grade ) (C H : U_0) : U i 0
:= boson ic i g ( Qubit C H)

27.3 Braid
The Braidn(X) type models the braid group Bn(X) on n strands over a smooth
set X : SmthSet, the fundamental group of the configuration space Confn(X),
used in knot theory, quantum computing, and smooth geometry.

In Urs, Braidn(X) is a type in U0, parameterized by n : Nat and X :
SmthSet, supporting braid generators σi and relations, with applications to
anyonic quantum gates and knot invariants.

Definition 12 (Braid Formation). The type Braidn(X) is formed for each
n : Nat and X : SmthSet:

Braid :
∏

n:Nat

∏
X:SmthSet

U0.

de f Braid (n : Nat ) (X : SmthSet ) : U_0
( * Braid group type * )
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Definition 13 (Braid Introduction). Terms of type Braidn(X) are introduced
via the braid constructor, representing generators σi for i : Fin (n− 1):

braid :
∏

n:Nat

∏
X:SmthSet

∏
i:Fin (n−1)

Braidn(X).

de f bra id (n : Nat ) (X : SmthSet ) ( i : Fin (n−1)) : Braid n X
( * Braid genera tor sigma_i * )

Definition 14 (Braid Elimination). The eliminator for Braidn(X) maps braid
elements to properties in U0:

BraidInd :
∏

n:Nat

∏
X:SmthSet

∏
β:Braidn(X)→U0

 ∏
b:Braidn(X)

β b

 →
∏

b:Braidn(X)

β b.

de f bra id_ind (n : Nat ) (X : SmthSet )
( beta : Braid n X −> U_0)
(h : Π (b : Braid n X) , beta b)

: Π (b : Braid n X) , beta b

Theorem 4 (Braid Relations). For n : Nat,X : SmthSet, Braidn(X) satisfies
the braid group relations (Commutation and Yang-Baxter):∏

n:Nat

∏
X:SmthSet

∏
i,j:Fin (n−1), |i−j|≥2

σi · σj = σj · σi,

∏
n:Nat

∏
X:SmthSet

∏
i:Fin (n−2)

σi · σi+1 · σi = σi+1 · σi · σi+1.

de f bra id_r e l_comm (n : Nat ) (X : SmthSet ) ( i j : Fin (n−1))
: Path ( bra id i · bra id j ) ( bra id j · bra id i )

de f bra id_r e l_yang (n : Nat ) (X : SmthSet ) ( i : Fin (n−2))
: Path ( bra id i · bra id ( i+1) · bra id i ) ( bra id ( i+1) · bra id i ·

bra id ( i+1) )

Theorem 5 (Configuration Space Link). For n : Nat,X : SmthSet, Braidn(X)
is the fundamental groupoid of Confn(X):∏

n:Nat

∏
X:SmthSet

Braidn(X) ∼= π1(Confn(X)).

de f bra id_conf (n : Nat ) (X : SmthSet )
: Path ( Braid n X) ( p i_1 ( Conf n X) )
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Theorem 6 (Quantum Braiding). For C,H : U0, Braidn(X) acts on Qubit(C,H)⊗n

as braiding operators:

braid_qubit :
∏

n:Nat

∏
C,H:U0

∏
X:SmthSet

Braidn(X) →
(
Qubit(C,H)⊗n → Qubit(C,H)⊗n

)
.

de f bra id_qubit (n : Nat ) (C H : U_0) (X : SmthSet )
: Braid n X −> ( Qubit C H)^n −> ( Qubit C H)^n

Theorem 7 (Braid Group Delooping). For n : Nat, the delooping BBn of the
braid group Bn is a 1-groupoid:

BBn : Grpd 1 ≡ ℑ(Confn(R2)).

de f BB_n (n : Nat ) : Grpd 1 := ℑ ( Conf n R2 )
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27.4 Graded Universes
Graded Universes. The Uα type represents a graded universe indexed by a
monoid G = N × Z/2Z, where α ∈ G encodes a level (N) and parity (Z/2Z:
0 = bosonic, 1 = fermionic). Graded universes support type hierarchies with
cumulativity, graded tensor products, and coherence rules, used in supergeome-
try (e.g., bosonic/fermionic types), quantum systems (e.g., graded qubits), and
cohesive type theory.

In Urs, Uα is a type indexed by α : G, with operations like lifting, product
formation, and graded tensor products, extending standard universe hierarchies
to include parity, building on Tensor.

Definition 15 (Grading Monoid). The grading monoid G is defined as N×Z/2Z,
with operation ⊕ and neutral element 0, encoding level and parity.

G : Type ≡ N× Z/2Z,
⊕ : G → G → G,

(α, β) 7→ (fst α+ fst β, (snd α+ snd β) mod 2),

0 : G ≡ (0, 0).

de f G : Type := N × Z/2Z
de f ⊕ (α β : G ) : G := ( f s t α + f s t β , ( snd α + snd β ) mod 2)
de f ⊬ : G := ( 0 , 0)

Definition 16 (Graded Universe Formation). The universe Uα is a type in-
dexed by α : G, containing types of grade α. A shorthand notation Ui,g is used
for U (i, g).

U : G → Type,

Grade : Set ≡ {0, 1},
Ui,g : Type ≡ U(i, g) : Ui+1.

de f U (α : G ) : Type := Universe α
de f Grade : Set := {0 , 1}
de f U ( i : Nat ) ( g : Grade ) : Type := U ( i , g )
de f U0 ( g : Grade ) : U ( 1 , g ) := U ( 0 , g )
de f U0 0 : Type := U ( 0 , 0)
de f U1 0 : Type := U ( 1 , 0)
de f U0 1 : Type := U ( 0 , 1)

Definition 17 (Graded Universe Coherence Rules). Graded universes support
coherence rules for lifting, product formation, and substitution, ensuring type-
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theoretic consistency.

lift :
∏

α,β:G

∏
δ:G

U α→ (β = α⊕ δ) → U β,

univ :
∏
α:G

U (α⊕ (1, 0)),

cumul :
∏

α,β:G

∏
A:U α

∏
δ:G

(β = α⊕ δ) → U β,

prod :
∏

α,β:G

∏
A:U α

∏
B:A→U β

U (α⊕ β),

subst :
∏

α,β:G

∏
A:U α

∏
B:A→U β

∏
t:A

U β,

shift :
∏
α,δ:G

∏
A:U α

U (α⊕ δ).

de f l i f t (α β : G ) ( δ : G ) ( e : U α) : β = α ⊕ δ → U β :=
λ eq : β = α ⊕ δ , t r an spo r t (λ x : G , U x ) eq e

de f univ−type (α : G ) : U (α ⊕ ( 1 , 0 ) ) :=
l i f t α (α ⊕ ( 1 , 0 ) ) ( 1 , 0) (U α) r e f l

de f cumul (α β : G ) (A : U α) ( δ : G ) : β = α ⊕ δ → U β :=
l i f t α β δ A

def prod−r u l e (α β : G ) (A : U α) (B : A → U β ) : U (α ⊕ β ) :=
Π ( x : A) , B x

de f subst−r u l e (α β : G ) (A : U α) (B : A → U β ) ( t : A) : U β :=
B t

de f s h i f t (α δ : G ) (A : U α) : U (α ⊕ δ ) :=
l i f t α (α ⊕ δ ) δ A r e f l

Definition 18 (Graded Tensor Introduction). Graded tensor products combine
types with matching levels, combining parities.

tensor :
∏
i:N

∏
g1,g2:Grade

Ui,g1 → Ui,g2 → Ui,(g1+g2 mod 2),

pair-tensor :
∏
i:N

∏
g1,g2:Grade

∏
A:Ui,g1

∏
B:Ui,g2

∏
a:A

∏
b:B

tensor(i, g1, g2, A,B).

de f t en so r ( i : Nat ) ( g1 g2 : Grade )
(A : U i g1 ) (B : U i g2 ) : U i ( g1 + g2 mod 2)

:= A ⊗ B

def pair−t en so r ( i : Nat ) ( g1 g2 : Grade ) (A : U i g1 )
(B : U i g2 ) ( a : A) (b : B) : t en so r i g1 g2 A B

:= a ⊗ b
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Definition 19 (Graded Tensor Eliminators). Eliminators for graded tensor
products project to their components.

⊗-prj1 : (A⊗B) → A,

⊗-prj2 : (A⊗B) → B.

de f pr 1 ( i : Nat ) ( g1 g2 : Grade )
(A : U i g1 ) (B : U i g2 ) (p : A ⊗ B) : A := p . 1

de f pr 2 ( i : Nat ) ( g1 g2 : Grade )
(A : U i g1 ) (B : U i g2 ) (p : A ⊗ B) : B := p . 2

Theorem 8 (Monoid Properties). The grading monoid G satisfies associativity
and identity laws.

assoc : ((α⊕ β)⊕ γ) = (α⊕ (β ⊕ γ)),

id-left : (α⊕ 0) = α,

id-right : (0⊕ α) = α.

de f a s soc (α β γ : G ) : (α ⊕ β ) ⊕ γ = α ⊕ (β ⊕ γ ) := r e f l
de f ident− l e f t (α : G ) : α ⊕ ⊬ = α := r e f l
de f ident−r i g h t (α : G ) : ⊬ ⊕ α = α := r e f l

27.5 KU
The KUG type represents generalized K-theory, a topological invariant used to
classify vector bundles or operator algebras over a space, twisted by a groupoid.
It is a cornerstone of algebraic topology and mathematical physics, with appli-
cations in quantum field theory, string theory, and index theory.

In the cohesive type system, KUG operates on smooth sets SmthSet and
groupoids Grpd1, producing a type in the universe U(0,0). It incorporates a
twist to account for non-trivial topological structures, making it versatile for
modeling complex physical systems.

Definition 20 (KUG-Formation). The generalized K-theory type KUG is formed
over a term X : U(0,0), a groupoid G : U(0,0), and a twist τ :

∏
x:X U(0,0), yield-

ing a type in the universe U(0,0):

KUG :
∏

X:U(0,0)

∏
G:U(0,0)

∏
τ :
∏

x:X U(0,0)

U(0,0).

type exp =
| KÛ G o f exp * exp * exp
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Definition 21 (KUG-Introduction). A term of type KUG(X,G, τ) is intro-
duced by constructing a generalized K-theory class, representing a stable equiv-
alence class of vector bundles or operators over X, twisted by G and τ :

KUG :
∏

X:U(0,0)

∏
G:U(0,0)

∏
τ :
∏

x:X U(0,0)

KUG(X,G, τ).

l e t KÛ G_in t r o (x : exp ) ( g : exp ) ( tau : exp ) : exp =
KÛ G (x , g , tau )

Definition 22 (KUG-Elimination). The eliminator for KUG allows reasoning
about generalized K-theory classes by mapping them to properties or types
dependent on KUG(X,G, τ), typically by analyzing the underlying bundle or
operator structure over X:

KUGInd :
∏

X:U(0,0)

∏
G:U(0,0)

∏
τ :
∏

x:X U(0,0)

∏
β:KUG(X,G,τ)→U(0,0)

 ∏
k:KUG(X,G,τ)

β k

 →
∏

k:KUG(X,G,τ)

β k.

l e t KÛ G_ind (x : exp ) ( g : exp ) ( tau : exp ) ( beta : exp ) (h : exp ) : exp =
( * Hypothet i ca l e l im ina to r * )
App (Var "KÛ GInd" , KÛ G (x , g , tau ) )

Theorem 9 (K-Theory Stability). The type KUG(X,G, τ) is stable under sus-
pension, meaning it is invariant under the suspension operation in the spectrum,
reflecting its role in stable homotopy theory:

stability :
∏

X:U(0,0)

∏
G:U(0,0)

∏
τ :
∏

x:X U(0,0)

KUG(X,G, τ) =U(0,0)
KUG(SuspX,G, τ).

l e t KÛ G_s t a b i l i t y ( x : exp ) ( g : exp ) ( tau : exp ) : exp =
Path ( Universe ( 0 , Bose ) , KÛ G (x , g , tau ) , KÛ G ( Susp x , g , tau ) )

Theorem 10 (Refinement to Differential K-Theory, Theorem 3.4.5). The type
KUG(X,G, τ) can be refined to differential K-theory by incorporating a con-
nection, as provided by KUG

♭ (X,G, τ, conn):

refineKUG
♭
:

∏
X:U(0,0)

∏
G:U(0,0)

∏
τ :
∏

x:X U(0,0)

∏
conn:Ω1(X)

KUG(X,G, τ) → KUG
♭ (X,G, τ, conn).

l e t KÛ G_to_KU_\ f l a t ^G (x : exp ) ( g : exp ) ( tau : exp ) ( conn : exp ) : exp =
KU_\ f l a t ^G (x , g , tau , conn )
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