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Comprehension categories provide a powerful categorical framework
for modeling dependent type theories, bridging the gap between categori-
cal logic, topos theory, and type-theoretic semantics. This paper presents a
unified theoretical framework for comprehension categories, offering preci-
se definitions, key theorems, and novel applications.

We define a comprehension category as a category € equipped wi-
th a fibration p : € — € and a comprehension map that assigns to
each type A € EA € € over a context ' € C an extended context
A € C, satisfying pullback stability. We introduce variants, including
split and non-split comprehension categories, and contextual categories,
to accommodate strict and non-strict type theories. Key theorems include
the equivalence theorem, establishing that every comprehension category
induces a model of dependent type theory, and the splitting theorem,
demonstrating that any comprehension category can be replaced by an
equivalent split comprehension category. We further explore the relati-
onship between comprehension categories and related structures, such
as Categories with Representations (CwR) and Categories with Famili-
es (CwF), highlighting their functorial and computational interpretati-
ons. Applications are presented in categorical semantics, homotopy type
theory, and topos theory, including the interpretation of univalence axi-
oms and the construction of syntactic categories. This framework unifies
existing approaches, clarifies the categorical underpinnings of dependent
types, and paves the way for future developments in type-theoretic and
geometric foundations of mathematics.

As instantiation example we present a categorical model of Martin-Lof
Type Theory (MLTT-75) with dependent products (TT-types), dependent
sums (X-types), and identity types (Id-types) using Comprehension
Categories. The model uses a comprehension category, a Grothendieck
fibration with a comprehension functor, to capture type dependency and
context extension. Formal definitions are provided, with pullback di-
agrams resembling Awodey’s natural models.
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1 Comprehension Categories

Martin-Lof Type Theory (MLTT-75) is a dependent type theory with TI-
types, Z-types, and Id-types. Its categorical semantics is often modeled using
Grothendieck fibrations, with comprehension categories providing a structured
framework for type dependency and context extension [?, [d]. We formalize a
model using a comprehension category, based on a split Grothendieck fibration
with a comprehension functor, inspired by the codomain fibration. The model is
implemented in Lean 4 without dependencies, ensuring a minimal presentation.
Pullback diagrams, styled after Awodey’s natural models [5], illustrate the type
formers, with constructors (e.g., A, pair, refl) on upper arrows and type formers
on lower arrows.



1.1 Definitions

A split Grothendieck fibration p : € — B models dependent types, with functori-
al Cartesian lifts for strict substitution.

Definition 1 (Cleavage). A cleavage for a Grothendieck fibration p : € — €
assigns to each e € € and f: ¢’ — p(e) in € a Cartesian morphism ¢¢ : f*e — e
in € such that p(¢d¢) = f, where f*e € E...

Definition 2 (Split Fibration 1). A Grothendieck fibration p : € — € is a split
fibration if it has a cleavage such that the assignment f — f*e defines a functor
f* 1 Ep(ey — Ec for each fiber category €, and (go f)* =f* o g*.

Definition 3 (Split Fibration 2). A split fibration p : € — B is a functor p
with:

e For every e € £.0b and f: b’ — p(e) in B, a chosen lift (', : e’ — e)
with p(¢) =f.

e Uniqueness: For any two lifts (e1,d1), (e2, d2) with p(d1) = p(d2) = f,
there exists x : e2 — e7 with p(x) =id and ¢ o x = ¢3.

structure SplitFibration (E B : Category) where
functor : Functor E B
lift : V {e : E.Ob} {b’ : B.Ob} (f : B.Hom b’ (functor.obj e)),
(e’ : E.Ob) x (phi : E.Hom e’ e) x (functor.map phi =f)
lift unique : V {e : E.Ob} {b’ : B.Ob} (f : B.Hom b’ (functor.obj e))
(el e2 : E.Ob) (phil : E.Hom el e) (phi2 : E.Hom e2 e),
functor .map phil = f — functor.map phi2 =f —
3 (chi : E.Hom e2 el), functor.map chi =
B.id A E.comp phil chi =phi2

Definition 4 (Arrow Category). The arrow category C— of a category € has:
e Objects: Morphisms f: A — B in C.

e Morphisms: From f: A = B to g: C — D, a pair (hj : A > C,h, : B —
D) such that gohy =h, of.

e Composition: For (hy,hy) : f — g and (ki,kz) : g — 1, the composite is
(k1 o h1, k2 o ha).

Definition 5 (Comprehension Functor). For a split fibration p : &€ — €, a
comprehension functor is a functor {—}: & — €7 that maps each object A € &
to a morphism 7t : I'" — p(A) in €, and each morphism f: A — B in € to a
morphism (hy,hy) : {A} — {B} in €.

Definition 6 (Comprehension Category). A comprehension category consists
of:

e A split fibration p: &€ — C.



e A terminal object T € C.

e A comprehension functor {—}: & — €7, mapping A € € to (I',m: T —
p(A)).

e An adjunction: For 0: A — T'in € and A € &r, there exists A’ € Eo with
p(A’) = A and a morphism f: A’ — A such that p(f) = 0.

Definition 7 (Comprehension Category). A comprehension category models
MLTT-75 with a fibration and a comprehension functor for context extension.
A comprehension category consists of:

e A split fibration p: € — B.
e A terminal object T € B.Ob.

e A comprehension functor {—}: & — B, mapping A € &€ to (I',m: T —
p(A)).

An adjunction: For 0 : A — T and A € &, there exists A’ € € with
p(A’) = A and a morphism f: A’ — A such that p(f) = o.

Pullbacks in B for context extension.

Structure for TT-types (fiber exponentials), X-types (composition), and Id-
types (diagonals).

Definition 8 (Beck-Chevalley Condition). Let p : € — € be a fibration, and
consider a pullback square in C:

A9
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where foh = go q. For a functor F : Er» — & with a left or right adjoint
G : & — E&r/, the Beck-Chevalley condition holds if the canonical natural
transformation induced by the pullback, h* o G — q* o F (for right adjoints) or
q*oF — h* o G (for left adjoints), is an isomorphism.



Definition 9 (Dependent Sum). In a comprehension category with fibration
p: €& — C, a dependent sum for a type o € Er is a functor X5 : Erg — Er, left
adjoint to the substitution functor p} : &r — Er., such that for all morphisms
f: A — T in €, the Beck-Chevalley condition holds, i.e., the canonical natural
transformation X¢+g o q(f, 0)* = f* 0 L is an isomorphism.

Definition 10 (Dependent Product). In a comprehension category with fibrati-
onp: & — C, a dependent product for a type o € Er is a functor My : Ere — Er,
right adjoint to the substitution functor p} : &r — Er.¢, such that for all morphi-
sms f : A — T in C, the Beck-Chevalley condition holds, i.e., the canonical
natural transformation f* o TTg = Mg« 0 q(f, 0)* is an isomorphism.

Definition 11 (Identity Type). In a split comprehension category with fibrati-
on p: & — C, an identity type for a type o € Er consists of:

e A type Ids € Erg.o, where Lo.0 = pko.
e A morphism 15 : Lo — 15, where I = IN0.0.1ds, such that prg, ore =id.

e For any commutative square (f,M) : A — To, (g,N) : At — To.o, a
diagonal lifting h : I — A.T making both triangles commute.

All data must be stable under substitutions.

Definition 12 (Category with Attributes). A category with attributes is a full
split comprehension category, where the comprehension functor {—}: & — €7 is
fully faithful, and types over I' € € are determined by a functor Ty : C°P — Set.

Definition 13 (Display Map Category). A display map category is a
comprehension category where the comprehension functor {—} : € — €7 is
the inclusion of a full subcategory of €7, and all morphisms in the image are
display maps.

Definition 14 (Contextual Category). A contextual category is a category with
attributes equipped with:

e A terminal object o € C.

e A length function £ : obj(€) — N such that £(e) = 0, and for any type
océr, o)=L +1.

e For any non-empty context I'; a unique context A (the father) and type
0 € & such that I' = A.o.

Definition 15 (Weakening Morphism). In a comprehension category, a
weakening morphism is defined inductively:

e A display map ps: Lo — T is a weakening morphism.

e If f: A — T is a weakening morphism and o € &, then q(f,0) : A.f*o —
Lo is a weakening morphism.



Definition 16 (Variable). In a comprehension category, for a type o € Er, the
variable of type o is the unique term vq : Lo — pg0 such that py: o ve =1id.

Definition 17 (Universe). In a split comprehension category with terminal
object ® € C, a universe consists of:

e A type U € &,, the context o.U also denoted U.
e A type El € &y, with context U.El denoted u.

For a morphism f: " — U, the type of € Er is the substitution of El along f.

1.2 Theorems

Theorem 1 (Split Fibration Cleavage). Every split fibration p : &€ — € has a
cleavage such that the reindexing functors f* : ;o) — &¢/ satisfy (go f)* =
f*og*, and every Grothendieck fibration with such a cleavage is a split fibration.

Theorem 2 (Framework Equivalence). Every comprehension category can be
equipped with a structure equivalent to a category with families (CwF), category
with representable maps (CwR), or Awodey’s natural model under the existence
of terminal objects.



1.3 Example MLTT-75 Model

We model MLTT-75 using a comprehension category, interpreting contexts,
types, and terms via the fibration and comprehension functor.

Definition 18 (MLTT-75 Comprehension Model). Given a comprehension
category with categories €, B, a split fibration p : € — B, and a comprehension
functor {—}, the model of MLTT-75 is defined as:

e Contexts: Objects I € B.Ob.
e Types: Pairs (A,pa : p(A) =T), representing a type A in context I'.

e Terms: Morphisms t: ' — A in & such that p(t) =idr, i.e., sections.

Context extension: For I' = A, the context T;x : A is {A}, the domain of
the comprehension.

Type formers: Tl-types via fiber exponentials, X-types via composition,
Id-types via diagonals.

1.4 TI-Types

For ' A : Type and I[x : A - B : Type, the Tl-type TTx.aoB is formed using
exponentials in the fiber category Er.
The constructor A forms terms of TTy.o B. The pullback diagram is:

FXALJ(B

|

FTHTAB

1.5 X-Types

For ' H A : Type and I[x : A F B : Type, the Z-type Z,.oB is formed via
composition in the fibration.
The constructor pair forms terms of X,.aoB. The pullback diagram is:

pair
AB—— B

l

FTFXA

1.6 Id-Types

For T'H A : Type and a,b : A, the identity type Ida (a,b) is formed using the
diagonal map in the fibration.



The constructor refl forms terms of Ida (a, a). The pullback diagram is:

Tda(a, b 5 A

|AA

FTAxrA



structure ComprehensionCategory (E B : Category) where
fib : SplitFibration E B
terminal : 3 (T : B.Ob), V (A : B.Ob), 3! (t : B.Hom A T), True
comp_ functor : V (A : E.Ob), £ (I'” : B.Ob) (m : B.Hom I'" (fib.functor.obj A))
comp_adj : V (I' : B.Ob) (A : E.Ob) (pA : fib.functor.obj A =T
) (0 : B.Hom A T),
3 (A’ : E.Ob) (pA’ : fib.functor.obj A” =A) (f : E.Hom A’ A),
fib . functor .map f = o
pullback : VvV {ABC : B.Ob} (f : B.Hom A B) (g : B.Hom C B),
3 (P : B.Ob) (hl : B.Hom P A) (h2 : B.Hom P C),
B.comp f hl = B.comp g h2 A
vV (Q : B.Ob) (ql : B.Hom Q A) (g2 : B.Hom Q C),
B.comp f ql = B.comp g g2 — 3 (u : B.Hom Q P), B.comp hl u =
ql N B.comp h2 u =q2
pi : V(I': B.Ob) (A e : EOb) (f : E.-Hom A e) (pA pe : fib.functor.obj A =
A fib.functor.obj e =T),
3 (Pi : E.Ob) (pi : E.Hom Pi I'), fib.functor.obj Pi =I' A
vV (C : E.Ob) (g : E.Hom C A) (pC : fib.functor.obj C =I'),
3 (h : E.Hom C Pi), E.comp pi h =E.comp { g
sigma : V (I' : B.Ob) (A e : E.Ob) (f : E.Hom A e) (pA pe : fib.functor.obj A =T
A fib.functor.obj e =I),
3 (Sigma : E.Ob) (sigma : E.Hom Sigma I'), fib.functor.obj Sigma =I
id : V (I' : B.Ob) (A : E.Ob) (pA : fib.functor.obj A =T),
3 (Id : E.Ob) (id : E.Hom Id A), fib.functor.obj Id =I

Context : Type
Context := B.Ob

Type : Context — Type
Type I' := £ (A : E.Ob), fib.functor.obj A =l

Term : V (I' : Context), Type I' — Type

Term I' (A, pA) := X (t : E.-Hom ' A), fib.functor.map t =B.id

ContextExt : V (I' : Context), Type ' — Context

ContextExt T' (A, pA) := (comp functor A).1

PiType vV (I' : Context) (A : Type I'), Type (ContextExt I' A) — Type T

PiType T' (A, pA) (e, pe) := let res := pi ' A e E.id (pA, pe) in (res.l, res.2.1)
SigmaType : V (I' : Context) (A : Type I'), Type (ContextExt ' A) — Type T

SigmaType I' (A, pA) (e, pe) := let res := sigma ' A e E.id (pA, pe) in (res.l, res.2.1)

IdType : V (I' : Context) (A : Type ') (a b : Term I' A), Type T
IdType I' (A, pA) (a, pa) (b, pb) := let res :=id ' A pA in (res.l, res.2.1)



1.7 Conclusion

The Lean 4 formalization provides a minimal, dependency-free model of MLTT-
75 using a comprehension category, explicitly capturing type dependency and
context extension via a Grothendieck fibration and comprehension functor. This
contrasts with the representable maps approach, aligning more closely with
traditional fibration-based models. The pullback diagrams, styled after Awodey,
clarify the categorical constructions. Future work includes verifying the model
with concrete examples and extending it to homotopy type theory.
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