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Amnoraiiis

This article presents a modern categorical framework, termed
Categories with Representable Maps (CwR), designed to model structures
for dependent type theories. Inspired by Uemura’s work, the framework
unifies related models such as categories with families, categories with
attributes, comprehension categories, and natural models. We provide
a comprehensive set of classical mathematical definitions and theorems,
focusing on specialized categorical structures like fibrations, indexed
categories, and representable maps, while establishing their properties and
equivalences.

As example we present a categorical model of Martin-L6f Type Theory
(MLTT-75) with dependent products (TT-types), dependent sums (Z-
types), and identity types (Id-types). The model is based on Grothendieck
fibrations and Uemura’s categories with representable maps, generalizing
Awodey’s natural models. Formal definitions are provided, with pullback
diagrams resembling Awodey’s style.

Categories with Representable Maps

N O O U N

The Categories with Representable Maps (CwR) framework offers a robust
foundation for categorical semantics, generalizing prior models used in type



theory. Assuming a base category € with all pullbacks, this framework bui-
Ids on specialized structures to define representable maps and their properties,
ensuring flexibility and unification across related categorical models. This article
delineates the core definitions and theorems of the CwR framework, providing
a concise yet complete theory.

Martin-Lof Type Theory (MLTT-75) is a dependent type theory with TI-
types, Z-types, and Id-types. We model its categorical semantics using a category
with representable maps (CwR), starting from Grothendieck fibrations, as descri-
bed in [1].

1.1 Definitions

Definition 1 (Fiber Category). For a functor p : € — € and an object ¢ € C,
the fiber category E. has:

e Objects: e € € such that p(e) = c.
e Morphisms: f: e’ — e in & such that p(f) = id.

Definition 2 (Cartesian Morphism). For a functor p : € — €, a morphism
¢:e’ — ein & is Cartesian if, for any g: e’ — ein & and h: p(e”) — p(e’)
in € with p(g) = p(d) o h, there exists a unique k : e — e’ in & such that
p(k)=hand g=¢ok.

Definition 3 (Grothendieck Fibration). A functor p : & — C is a Grothendieck
fibration if, for every e € € and f : ¢/ — p(e) in C, there exists a Cartesian
morphism ¢ : e’ — e in € such that p(¢d) = f.

Definition 4 (Grothendieck Construction). For an indexed category @ : C°P —
Cat, the Grothendieck construction produces a category [ @ with:

e Objects: Pairs (c,x), where c € C, x € O(c).

e Morphisms: From (c¢’,x’) — (c,x), pairs (f,a), where f : ¢/ — ¢ in G,
a:x" — O(f)(x) in O(c’).

e Composition: For (g, ) : (c¢”,x”) — (c¢’,x’) and (f, ) : (c’,x") — (c,x),

the composite is (f o g, ®(g)(a) o B).

The functor p : [@® — €, mapping (c,x) — ¢, (f,&) — f, is a Grothendieck
fibration.

Definition 5 (Discrete Fibration). A functor p : € — € is a discrete fibration
if, for every e € € and f: ¢’ — p(e) in C, there exists a unique f: e’ — e in €
such that p(f) = f.

Definition 6 (Indexed Category). An indexed category over € is a functor
@ : C°? — Cat. For each ¢ € C, @(c) is a category, and for each f: ¢’ — c,
O(f) : d(c) — ®(c’) is a functor.



Definition 7 (Representable Functor). A functor F: C°P — Set is representable
if there exists ¢ € € such that F = Home(—,c).

Definition 8 (Representable Map). In a category € with pullbacks, a morphism
f: A — B is representable if it belongs to a class Rep(f) satisfying:

o Pullback stability: For every g : C — B, the pullback P = C xg A exists
with projections h; : P — A, hy : P — C, and Rep(h;).

o Universality: For any Q with q71: Q = A, q2: Q — C such that foq; =
go (s, there exists a unique u : Q — P such that hjou = g7, hoou = q5.

Definition 9 (CwR). A category with representable maps (CwR) is a category
with a class of morphisms (representable maps) that are pullback-stable
and exponentiable, generalizing Awodey’s natural models. A category with
representable maps (CwR) is a structure with:

e A category C.
e A predicate Rep : C.Hom(A, B) — Prop for representable maps.

e Pullback stability: For every f: A — B with Rep(f) and g : C — B, there
exists a pullback P with morphisms h; : P — A, hy, : P — C such that
foh; = gohy, Rep(hz), and P is universal.

e FEzponentiability: For every f : A — B with Rep(f), there exists TT¢ : Ob
and 7t : Tl — B with Rep(7t), such that for any g : C — A, there exists
h:C =Tl withmoh=fog.

structure CwR where
cat : Category
Rep : V {A B : cat.Ob}, cat.Hom A B — Prop
pullback : VvV {A B C : cat.Ob} {f : cat.Hom A B},
Rep f — (g : cat.Hom C B) —
3 (P : cat.Ob) (3 (hl : cat.Hom P A) (3 (h2 : cat.Hom P C)
(cat.comp f hl = cat.comp g h2 A
Rep h2 A
vV (Q : cat.Ob) (ql : cat.Hom Q A) (q2 : cat.Hom Q C),
cat.comp f ql = cat.comp g q2 —
3 (u : cat.Hom Q P)
(cat.comp hl u = gl A cat.comp h2 u =q2))))
exponentiable : V {A B : cat.Ob} {f : cat.Hom A B},

Rep f —
3 (Pi f : cat.Ob) (3 (pi : cat.Hom Pi f B)
(Rep pi A

vV (C : cat.Ob) (g : cat.Hom C A),
3 (h : cat.Hom C Pi_f) (cat.comp pi h =cat.comp f g)))



1.2 Theorems

The CwR framework is supported by five theorems that establish its properties
and connections to related categorical structures.

Theorem 1 (Fibration-Indexed Category Equivalence). For any indexed
category @ : C°P — Cat, the Grothendieck construction produces a Grothendi-
eck fibration p : [® — €, and every Grothendieck fibration arises as the
Grothendieck construction of some indexed category.

Theorem 2 (Representable Map Stability). In a CwR (€, Rep, TT), the class of
representable maps is closed under pullback stability, and every representable
map f: A — B induces a representable morphism 7t¢ : T — B.

Theorem 3 (Discrete Fibration Representation). Every discrete fibration p :
& — € corresponds to a representable map in the slice category C/c for some
¢ € @, and every representable map induces a discrete fibration in a suitable
slice category.

Theorem 4 (Framework Equivalence). Every CwR (C, Rep, IT) can be equipped
with a structure equivalent to a category with families, or natural model under
the existence of terminal objects.



1.3 Example MLTT-75 Model

We model MLTT-75 in a CwR, interpreting contexts, types, terms, and type
formers.

Definition 10 (MLTT-75 Model). Given a CwR €, the model of MLTT-75 is
defined as:

e Contexts: Objects I € C.Ob.

Types: Pairs (A,f: A — I') with Rep(f), representing A in context T
e Terms: Morphisms t: "' — A such that f ot =idr, i.e., sections of f.

Context extension: For I' = A, the context I[x : A is the pullback of
f: A — T along idr.

Type formers: Tl-types, Z-types, and Id-types, defined via exponentials,
pullbacks, and diagonals.

structure MLTT75 (cwr : CwR) where
Context : Type
Context := cwr.cat.Ob

Type : Context — Type
Type I' := 3 (A : cwr.cat.Ob)
(3 (f : cwr.cat.Hom A T) (cwr.Rep f))

Term : V (I' : Context), Type ' — Type
Term ' (3 A (3 £ 1))
=3 (t : cwr.cat.Hom I' A)
(cwr.cat.comp f t = cwr.cat.id)

ContextExt : V (I' : Context), Type I' — Context
ContextExt T' (3 A (3 f rf)) := (cwr.pullback rf cwr.cat.id). fst



1.4 TI-Types

For ' A : Type and I[x : A B : Type, the TT-type TTx.A B is formed using the
exponential in the slice category.
PiType : V (I' : Context) (A : Type I'), Type (ContextExt ' A) — Type T
PiType I' (3 A (3 f rf)) (I B (3 g rg)) :=
let exp := cwr.exponentiable rf
3 exp.fst (3 exp.snd.fst exp.snd.snd.fst)

The constructor A forms terms of TTy.o B. The pullback diagram is:

rxALfs

|

[ ————TIAB
T

1.5 2X2-Types

For T A : Type and Ix : A F B : Type, the Z-type L,.AB is the composition
via pullback.
SigmaType : V (I' : Context) (A : Type I'), Type (ContextExt ' A) — Type T
SigmaType I' (3 A (3 f rf)) (I B (3 g rg)) :=
let pull := cwr.pullback rg (cwr.cat.id)
3 pull.fst (3 pull.snd.fst pull.snd.snd.snd. fst)

The constructor pair forms terms of Xy.oB. The pullback diagram is:

pair
AB—— B

T

FTFXA



1.6 Id-Types

For T'H A : Type and a,b : A, the identity type Ida (a,b) is formed using the
diagonal map.
Diagonal : V (I' : Context) (A : Type I'),
cwr.cat .Hom (A.fst) (cwr.pullback A.snd.fst cwr.cat.id). fst
Diagonal ' (3 A (3 £ ))
:= (cwr.cat.id, cwr.cat.id, rfl)

IdType : V (I' : Context) (A : Type I') (a b : Term I' A), Type T
IdType ' (3 A (3 f rf)) (T a _) (T b ) :=

let pull := cwr.pullback rf (Diagonal T' (3 A (3 f rf)))

3 pull.fst (3 pull.snd.fst pull.snd.snd.snd. fst)

The constructor refl forms terms of Ida (a, a). The pullback diagram is:

Tda(a, b 5 A

|AA

FTAxrA

1.7 Conclusion

The CwR framework provides a unified and flexible foundation for categorical
semantics, integrating fibrations, indexed categories, and representable maps. Its
definitions and theorems ensure robustness and connectivity to related categori-
cal models, making it a powerful tool for theoretical and applied category theory.
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