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1 Fibered Categories
The term “type dependency” refers to the ability in a calculus of types and terms
to have types that depend on term variables, as studied by de Bruijn [4] and
Martin-Löf [22]. In computer science, type dependency is useful, e.g., to define
List(n) as the type of lists of length n. Unlike polymorphic calculi, languages
with type dependency blur the distinction between compile time and run time.
This paper focuses on the categorical semantics of type dependency, referring
to [22, 31] for syntactic details.

A key challenge in categorical semantics is modeling contexts, which cannot
be simple cartesian products due to dependencies among types. Specifically, we
address context extension, i.e., the transition from Γ ⊢ σ : Type to the extended
context Γ, x : σ. In categorical logic, statements Γ ⊢ σ : Type are viewed as
objects fibred over contexts Γ , requiring a fibration p : E → B. Context extensi-
on is modeled by a functor P0 : E → B, equipped with a natural transformati-
on P0 → p, where components are projections Γ, x : σ → Γ . This structure
corresponds to a functor E → B→, where B→ is the arrow category of B. By
requiring projections to be stable under substitution (see Lemma 4), we define
comprehension categories.
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Various categorical structures for type dependency have been proposed over
the past 15 years [5, 28, 30, 19, 15, 23, 26]. Despite differences, context extensi-
on is a common feature. Comprehension categories provide a minimal, clean
categorical framework, further developed in [16, 17], where they serve as buildi-
ng blocks for arbitrary type systems.

Comprehension categories involve a weak form of comprehension, described
by disjoint unions (see after Lemma 4), handling context extension in Γ, x : σ.
Other notions of comprehension (Pavlović, Ehrhard, Lawvere) fit within this
framework.

We view category theory as an assembly language, requiring detailed handli-
ng of substitution and isomorphisms, while type theory acts as a higher-level
language for parts of category theory, with interpretation akin to compilati-
on. Category theory thus provides a variable-free formalism for logic and type
theory, central to categorical abstract machines [6, 7].

The paper begins with fibred category theory (Sections 1.1 and 1.2), coveri-
ng standard material from Grothendieck and Bénabou. Fibrations are the
backbone of comprehension categories, and fibred adjunctions ensure substituti-
on properties like (λx : σ.P)[x := M] = λx : σ[x := M].(P[x := M]). Section 1.3
introduces comprehension categories, showing how examples fit, while Section
1.4 addresses quantification.
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1.1 Fibrations
We present basic facts about fibrations; see [2, 11, 12, 13] for details. Parentheses
are often omitted for readability.

Definition 1. Let p : E → B be a functor.

(i) A morphism f : D→ E in E is cartesian over u : A→ B in B if:

(a) pf = u,

(b) for every f ′ : D ′ → E with pf ′ = u, there is a unique ϕ : D ′ → D
with pϕ = idA and f ′ = f ◦ ϕ.

(ii) Dually, g : D → E is cocartesian over u if g in Eop is cartesian over u in
Bop, i.e.:

(a) pg = u,

(b) for every g ′ : D → E ′ with pg ′ = u, there is a unique ψ : E → E ′

with pψ = idB and g ′ = ψ ◦ g.

This is shown in Figure 1. A cartesian f is a terminal lifting, and a cocartesian
g is an initial lifting of u.

D ′ D

E

A B

ϕ

ff ′

u

pϕ = idA

Рис. 1: Cartesian morphism diagram.

(iii) The functor p : E → B is a fibration if:

(a) for every E ∈ E and u : A→ pE in B, there is a cartesian f : D→ E
over u in E;

(b) the composition of two cartesian morphisms is cartesian.

B is the base category, and E is the total category. Dually, p is a cofibration
if pop : Eop → Bop is a fibration. A bifibration is both a fibration and a
cofibration.

The arrow category B→ has arrows of B as objects and commuting squares
as morphisms. The functor dom : B→ → B is a fibration. If B has pullbacks,
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cod : B→ → B is a bifibration, with cartesian morphisms as pullback squares.
Modules over rings provide another bifibration example [12].

Cartesian (cocartesian) morphisms are denoted ū(E) : u∗(E) → E (u(D) :
D → u∗(D)), unique up to isomorphism. A morphism f : D → E is strong
cartesian over u : A → B if pf = u and for any f ′ : D ′ → E with pf ′ = u ◦ v,
there is a unique ϕ : D ′ → D with pϕ = v and f ′ = f ◦ ϕ. For fibrations,
cartesian and strong cartesian morphisms coincide.

Definition 2. Let p : E → B be a functor. For B ∈ B, the fibre EB is the
category with objects E ∈ E such that pE = B and arrows f in E with pf = idB

(vertical morphisms).

For E,D ∈ E and u : pE → pD, define Eu(D,E) = {f ∈ E(D,E) | pf = u}.
If p is a fibration, Eu(D,E) ∼= EpD(D,u∗(E)); if a cofibration, Eu(D,E) ∼=
EpE(u∗(D), E).

For a fibration p and u : A → B, define u∗(f) : u∗(E) → u∗(D) in EA for
f : E → D in EB using the cartesian morphism ū(D) : u∗(D) → D (see Figure
2). This yields a pullback in E, and u∗ : EB → EA is the reindexing functor.

u∗(E) u∗(D)

E D

u∗(f)

ū(E) ū(D)

f

Рис. 2: Reindexing functor diagram.

A cleavage is a collection {u∗, ū} satisfying certain natural isomorphisms. A
fibration is split if v̄ ◦ ū(E) = v̄(E) ◦ ū(v∗(E)) and īd(E) = idE.

The Grothendieck construction yields a split fibration from a functor Ψ :
Bop → Cat, with objects (A,X), X ∈ ΨA, and morphisms (u, f) : (A,X) →
(B, Y), where u : A→ B and f : X→ Ψ(u)(Y).

Proposition 1. Let p : E → B be a fibration.

(i) p is a bifibration if and only if every u∗ has a left adjoint Σu.

(ii) If r : B → A is a fibration, then rp : E → A is a fibration.

Definition 3. (i) For fibrations p : E → B and q : D → B, a functor H : E →
D is cartesian if q ◦ H = p and H preserves cartesian morphisms. This
defines a category Fib(B). More generally, Fib has morphisms (H,K) : (p :
E → B) → (q : D → A) where q ◦ H = K ◦ p and H preserves cartesian
morphisms.
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(ii) Fib(B) and Fib are 2-categories with 2-cells σ : H → H ′ (in Fib(B)) or
(σ, τ) : (H,K) → (H ′, K ′) (in Fib) as natural transformations with vertical
components.

Lemma 1. Let p : E → B, q : D → B be fibrations, and F : p→ q a cartesian
functor.

(i) F restricts to F|A : EA → DA. F is full (faithful) if and only if every F|A is
full (faithful).

(ii) If F is full and faithful, f is p-cartesian if and only if Ff is q-cartesian.

Proposition 2. (i) The pullback in Cat of a fibration p : E → B and K : A →
B yields a fibration K∗(p) : A ×

K,p
E → A and a morphism K∗(p) → p.

(ii) The functor Fib → Cat, mapping a fibration to its base, is a fibration with
fibres Fib(B).

(iii) Fib(B) has finite products, preserved under change-of-base.
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1.2 Category Theory over a Basis
Since Fib(B) is a 2-category, we define fibred adjunctions.

Definition 4. For fibrations p : E → B, q : D → B, and cartesian functors
F : p→ q, G : q→ p, F is a fibred left adjoint of G if F ⊣ G with a vertical unit
η.

Definition 5. For adjunctions F ⊣ G (F : E → D) and F ′ ⊣ G ′ (F ′ : E ′ → D ′),
a pseudo map from F ⊣ G to F ′ ⊣ G ′ is a quadruple (K, L,φ,ψ) with functors
K : E → E ′, L : D → D ′, and natural isomorphisms φ : F ′K → LF, ψ : G ′L →
KG, preserving units and counits (see Figure 3).

E D

E ′ D ′

F

F ′

K L
G ′

G

φ : F ′K→ LF

ψ : G ′L→ KG

Рис. 3: Pseudo map of adjunctions.

Lemma 2. In Definition 5, φ and ψ determine each other: an isomorphism
F ′K ∼= LF induces a pseudo map if and only if the canonical transformation
KG→ G ′L is an isomorphism, and similarly for G ′L ∼= KG.

Proposition 3. For a cartesian functor F : p→ q in Fib(B) with right adjoints
GA for each F|A, the following are equivalent:

(i) F has a fibred right adjoint G underlying {GA}.

(ii) For every u : A → B, reindexing functors u∗p, u∗q determine a pseudo
map F|B ⊣ GB → F|A ⊣ GA.

(iii) For every u : A → B, the canonical transformation u∗pGB → GAu
∗q is

an isomorphism.

Definition 6. A fibration p : E → B admits a terminal object if the unique
morphism p→ terminal in Fib(B) has a fibred right adjoint. Thus, each fibre EA

has a terminal object 1A, and u∗(1B) → 1A is an isomorphism for u : A→ B.

Definition 7. A fibration p : E → B admits cartesian products if the morphism
∆ : p → p × p in Fib(B) has a fibred right adjoint. Thus, each fibre EA has
products (−)×A (−), and the canonical map u∗(E×BD) → u∗(E)×A u

∗(D) is
an isomorphism.

Definition 8. A fibration p : E → B admits equalizers if the morphism ∆ : p→
p2+ in Fib(B) has a fibred right adjoint, where p2+ is defined via change-of-base.
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Lemma 3. For a bifunctor F : A× P → B, the following are equivalent:

(i) For each p ∈ P, F(−, p) has a right adjoint G(−, p).

(ii) For every groupoid subcategory |P| of P with Obj|P| = ObjP, the functor
F̃ : A× |P| → B× |P| has a right adjoint G̃.

(iii) There exists such a groupoid |P| satisfying (ii).

Definition 9. A fibration p : E → B with cartesian products admits exponents
if the functor p̃rod : p× |p| → p× |p| in Fib(B) has a fibred right adjoint.

Definition 10. Let p : E → B be a fibration, where B has pullbacks.

(i) p has sums if every u∗ has a left adjoint Σu, and the Beck-Chevalley
condition holds: for a pullback in B, Σus

∗ → r∗Σv is an isomorphism.

(ii) p has products if u∗ ⊣ Πu and r∗Πv
∼= Πus

∗ canonically.

For a category B with finite limits, cod : B→ → B has fibred finite limits
and sums. B is a locally cartesian-closed category (LCCC) if cod : B→ → B is a
fibred CCC.

1.3 Comprehension Categories
Definition 11. A comprehension category is a functor P : E → B→ satisfying:

(i) cod ◦P : E → B is a fibration.

(ii) If f is cartesian in E, then Pf is a pullback in B.

It is full if P is full and faithful, and cloven or split if the fibration is cloven or
split.

Notation 1. For a comprehension category P : E → B→, write p = cod ◦P,
P0 = dom ◦P. The object part of P is a natural transformation P : P0 → p.
For E ∈ E, PE are projections, PE∗ are weakening functors, and |E| = {u : pE→
P0E | PE ◦ u = id} are terms of type E.

Example 1. (Term model) For a calculus with type dependency [22, 31], define
a full comprehension category P : E → B→. Objects of B are equivalence classes
[Γ ] of contexts. Morphisms [Γ ] → [∆], with ∆ ≡ y1 : τ1, . . . , yn : τn, are n-tuples
⟨[M1], . . . , [Mn]⟩ where Γ ⊢ Mi : τi[x1 := M1, . . . , xi−1 := Mi−1]. Objects of
E are [Γ ⊢ σ : Type], and arrows are pairs ([M̄], [N]) with [M̄] : [Γ ] → [∆] and
Γ, x : σ ⊢ N : τ[ŷ := M̄]. Then P : [Γ ⊢ σ : Type] 7→ ([Γ, x : σ] → [Γ ]).

Lemma 4. For a comprehension category P : E → B→, for every E ∈ E and
u : A → pE, there is a pullback as in Figure 4. Thus, a pullback functor
PE∗ : B/pE→ B/P0E is defined by u 7→ P0ū(E).

For E ∈ E above B ∈ B and u : A → B, there is an isomorphism
B/B(u,PE) ∼= |u∗(E)|, encoding a disjoint union.
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A P0E

pEB

P0ū(E)

u PE

id

Рис. 4: Pullback for Lemma 4.

Example 2. (Display-map categories) If B has pullbacks, the identity B→ →
B→ is a full comprehension category. For a category B with a collection D of
display maps closed under pullbacks [30, 15, 19], the inclusion B→(D) ⊂ B→ is
a full comprehension category.

Example 3. (Full internal subcategories) For an LCCC B and morphism τ,
the fibration Σ(τ) → B has a full and faithful cartesian functor Σ(τ) → B→,
forming a full comprehension category [27, 18].

Example 4. (Topos comprehension) For a topos B with subobject classifier
⊤ : t → Ω, the functor B/Ω → B→ mapping φ : A → Ω to its extension is a
comprehension category, full and faithful on Cart(B).

8



1.4 Quantification
A comprehension category is closed if it has a unit, products, and strong
sums (Definition 16). Products and sums are defined via adjoints to weakening
functors, using fibred or fibrewise adjunctions with Beck-Chevalley conditions.

For a comprehension category P : E → B→, define Cart(E) ⊂ E wi-
th cartesian arrows, yielding fibrations |p|∗ : Cart(E) × E → Cart(E) and
|P0|

∗(p). The natural transformation P : P0 → p lifts to a cartesian functor
⟨P⟩ : |p|∗(p) → |P0|

∗(p). P has products (sums) if ⟨P⟩ has a fibred right (left)
adjoint.

Fibrewise, P has products (sums) if every PE∗ : EpE → EP0E has a ri-
ght adjoint ΠE (left adjoint ΣE), and the Beck-Chevalley condition holds: for
cartesian f : E → E ′, (pf)∗ΠE ′ → ΠE(P0f)

∗ (or ΣE(P0f)
∗ → (pf)∗ΣE ′) is an

isomorphism.

Definition 12. For a comprehension category with products, objects E ∈ E are
types, and |E| are terms. For E,D ∈ E with pD = P0E, the product type ΠE.D
above pE has a canonical map |ΠE.D| → |D|, u 7→ u · varE.

Lemma 5. For a comprehension category with products, |ΠE.D| ∼= |D| if and
only if P preserves products, i.e., B/pE(u,P(ΠE.D)) ∼= B/P0E(PE

∗(u),PD).

Lemma 6. A comprehension category with unit preserves products.

Lemma 7. A nonempty full comprehension category preserves products.

Definition 13. Weak sums follow the rules:

Γ ⊢ σ : Type Γ, x : σ ⊢ τ : Type
Γ ⊢ Σx : σ.τ : Type

,
Γ ⊢M : σ Γ ⊢ N : τ[x :=M]

Γ ⊢ ⟨M,N⟩ : Σx : σ.τ
,

with weak elimination:

Γ ⊢ P : Σx : σ.τ Γ ⊢ ρ : Type Γ, x : σ, y : τ ⊢ Q : ρ

Γ ⊢ Q where ⟨x, y⟩ := P : ρ
.

Strong sums allow ρ to depend on w : Σx : σ.τ.

Lemma 8. A full comprehension category with unit, products, and sums yields
a fibred CCC.

Lemma 9. The comprehension category Fam(C) → Cat→ has sums if C has
infinite coproducts, and similarly for products.

Definition 14. A comprehension category has strong sums if for E,D ∈ E with
pD = P0E, the canonical map P0D→ P0(ΣE.D) is an isomorphism.

Definition 15. In a category C with terminal object t, a sum ⨿IX is strong if
(t ↓ X) → (t ↓ ⨿IX) is an isomorphism.

Lemma 10. If C has strong sums and small C(t,A), then C(t,−) : C → Sets
has a full and faithful left adjoint.
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Lemma 11. C has strong sums if and only if Fam(C) → Sets→ has strong
sums.

Proposition 4. In a distributive category C, strong sums exist if and only if
the terminal object is indecomposable.

Definition 16. A closed comprehension category (CCompC) is a full
comprehension category with unit, products, and strong sums.

Example 5. (i) For B with finite limits, IdB→ is a CCompC if and only if B
is an LCCC.

(ii) For B with finite products, ConsB : B → B→ is a CCompC if and only if
B is a CCC.

(iii) Fam(Sets) → Cat→ is a CCompC.

(iv) The term model (Example 1) with unit, products, and strong sums is a
CCompC.

(v) Realizability models in ω-Set and M yield CCompCs Fameff(C) →
ω-Set→.

Lemma 12. A CCompC P : E → B→ preserves units, sums, and products.
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