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Abstract

This article presents a categorical and topological framework for the
theory of partial differential equations (PDEs), unifying Green’s functions,
Stokes–Ostrogradsky theorems, and Fredholm and Volterra integral equa-
tions with applications to swarm coordination. We incorporate the de
Rham theorem, simplicial de Rham complexes, and synthetic differential
geometry, to formalize local-to-global duality in smooth toposes and differ-
ential graded algebras. PDEs are classified (elliptic, parabolic, hyperbolic)
and analyzed as morphisms in the category of sheaves, with solutions ex-
pressed via integral representations. Swarm coordination is modeled as a
dynamic system, with the Cucker–Smale model recommended for its scal-
ability and robustness. This synthesis bridges operational, categorical,
and applied perspectives, emphasizing homological structures and their
practical implications in robotics, UAV swarms, and biological systems.
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1 Theory of Differential Equations

1.1 Introduction

Differential equations, both ordinary (ODEs) and partial (PDEs), are fun-
damental to modeling dynamical systems across scientific domains. We ap-
proach these equations as structured objects within categorical, topological,
and functional-analytic frameworks.

This taxonomy classifies their applications based on their structural prop-
erties, topological contexts, and solution methods, drawing on insights from
category theory, homology, and synthetic differential geometry.

In the spirit of structural mathematics, partial differential equations (PDEs)
are not merely computational tools but objects within a categorical frame-
work, where morphisms reveal universal properties of local-to-global transitions.
Green’s functions, Stokes–Ostrogradsky theorems, and Fredholm and Volterra
integral equations, together with the de Rham theorem and synthetic differ-
ential geometry, form a cohesive structure in the category of functional spaces
and smooth toposes. This lecture elucidates these connections, emphasizing
homological and operator-theoretic perspectives, and integrates insights from
synthetic differential geometry to provide an axiomatic foundation for differen-
tial and integral structures.
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1.2 PDE as Distributed Dynamical Systems

Definition 1.1. A partial differential equation (PDE) is a relation L(u) = f ,
where L : E → F is a differential operator between functional spaces E and
F (e.g., Sobolev spaces Hk(Ω)), and u, f ∈ E are sections of a vector bundle
over a smooth manifold Ω. In the context of dynamical systems, the parameters
of the system (e.g., velocity, temperature) are distributed continuously over Ω,
modeled as fields.

PDEs describe systems where dynamics are governed by spatially distributed
parameters:

• Fluid Dynamics: Navier–Stokes equations model velocity and pressure
fields:

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∆u+ f .

• Heat Transfer : The heat equation ∂u
∂t = α∆u models temperature distri-

bution.

• Quantum Mechanics: The Schrödinger equation iℏ∂ψ∂t = − ℏ2

2m∆ψ + V ψ
describes wave functions.

In the category Diff of smooth manifolds, PDEs are morphisms in the cat-
egory of sheaves of sections of vector bundles. The local-to-global duality is
realized through the de Rham complex, where solutions are cohomology classes.

1.3 ODE as Localized Dynamical Systems

Remark 1.1. ODEs model systems where the state variables depend on a sin-
gle independent variable (typically time), and the dynamics are described by a
finite-dimensional state space, not necessarily a discrete set of points. The con-
figuration space may be continuous (e.g., Rn), but the dynamics are localized in
the sense that they do not depend on spatial derivatives.

Definition 1.2. An ordinary differential equation (ODE) is a relation ẋ =
f(t, x), where x ∈ M is a state in a manifold M (e.g., Rn), and f : R ×
M → TM is a vector field. The dynamics are governed by a single independent
variable, typically time.

ODEs model systems with localized dynamics:

• Mechanical Systems: The equations of motion, e.g., ẍ + ω2x = 0 for a
harmonic oscillator.

• Population Dynamics: The logistic equation ẋ = rx(1− x/K).

• Control Systems: State-space models ẋ = Ax+Bu.
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In the category Vect of vector spaces or Man of manifolds, ODEs are flows
on M, represented as morphisms in the category of dynamical systems. The
localized nature of ODEs contrasts with the distributed nature of PDEs, reflect-
ing a categorical distinction between finite-dimensional and infinite-dimensional
systems.

1.4 Classification of Spaces

Definition 1.3. Functional spaces for differential equations are classified as
follows:

• Topological Spaces: Sets with a topology, equipped with continuous maps.

• Metric Spaces: Topological spaces with a distance function d(x, y).

• Linear Spaces: Vector spaces over R or C.

• Normed Spaces: Linear spaces with a norm ∥ · ∥.

• Banach Spaces: Complete normed spaces.

• Euclidean Spaces: Finite-dimensional Banach spaces with the Euclidean
norm.

• Unitary Spaces: Hilbert spaces with a unitary group action (e.g., L2(Ω)).

• Hilbert Spaces: Complete inner product spaces (e.g., L2(Ω)).

• Fréchet Spaces: Complete metrizable locally convex topological vector spaces
(e.g., C∞(Ω)).

These spaces provide the ambient categories for differential equations:

• PDEs typically operate in Hilbert spaces (L2) or Sobolev spaces (Hk) due
to their completeness and inner product structure.

• ODEs operate in finite-dimensional Euclidean spaces or manifolds.

• Fréchet spaces are used for smooth solutions in C∞(Ω).

1.5 Theory of Distributions

Definition 1.4. A distribution on a space E (e.g., C∞
c (Ω)) is a continuous

linear functional T : E → R (or C) in the topological dual E∗. The space of
distributions is denoted D′(Ω).

• The space ℓ2 is the Hilbert space of square-summable sequences with the
inner product ⟨x, y⟩ =

∑
xiyi.

• The space L2(Ω) is the Hilbert space of square-integrable functions with
the inner product ⟨f, g⟩ =

∫
Ω
f(x)g(x) dµ(x).

Distributions generalize functions, allowing solutions to PDEs with singular
sources (e.g., Dirac delta δξ). In L

2(Ω), solutions to PDEs are often sought due
to the space’s completeness and orthogonality properties [3].
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1.6 Solution Classification of PDE

Definition 1.5. PDEs of second order are classified into three types based on
the eigenvalues of the principal symbol of the differential operator L:

• Elliptic: All eigenvalues have the same sign (e.g., Laplace equation ∆u =
0).

• Parabolic: One eigenvalue is zero (e.g., heat equation ∂u
∂t = ∆u).

• Hyperbolic: Eigenvalues have mixed signs (e.g., wave equation ∂2u
∂t2 =

∆u).

Solution methods:

• Elliptic PDEs: Solved using Green’s functions and Fredholm integral
equations in L2(Ω). The Green’s function G(x, ξ) satisfies:

LxG(x, ξ) = δξ,

yielding solutions:

u(x) =

∫
Ω

G(x, ξ)f(ξ) dξ + boundary terms.

• Parabolic PDEs: Solved using Volterra integral equations or semigroup
methods in Hk(Ω), reflecting causality.

• Hyperbolic PDEs: Solved using integral representations or d’Alembert’s
formula, often in L2(Ω).

2 Category Theory of Differential Equations

In the derived category of sheaves, PDE solutions are sections of vector bun-
dles, and the de Rham complex provides a homological framework for integral
representations [4].

2.1 Green’s Functions: Kernels of Inverse Morphisms

Definition 2.1. Let E and F be Hilbert spaces (e.g., L2(Ω) or Sobolev spaces
Hk(Ω)), and let L : E → F be a linear differential operator on a smooth manifold
Ω. A Green’s function G : Ω× Ω → R (or C) for L is a morphism satisfying:

LxG(x, ξ) = δξ,

where δξ ∈ F∗ is the Dirac delta functional, defined by ⟨δξ, f⟩ = f(ξ) for all
f ∈ F.
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The Green’s function induces an integral operator K : F → E, given by:

(Kf)(x) =

∫
Ω

G(x, ξ)f(ξ) dµ(ξ),

which acts as a right inverse to L, i.e., LK = idF on a suitable subspace of F.
In the category of Hilbert spaces, G is a kernel in Hom(F∗,E), embodying the
duality between F and its dual F∗.

2.2 Stokes—Ostrogradsky Theorems: Homological Isomor-
phisms

Theorem 2.1 (Generalized Stokes Theorem). Let M be an oriented smooth n-
manifold with boundary ∂M , and let ω ∈ Ωn−1(M) be a differential (n−1)-form.
Then: ∫

M

dω =

∫
∂M

ω,

where d : Ωn−1(M) → Ωn(M) is the exterior derivative [5].

• Ostrogradsky–Gauss Theorem: For a vector field F on Ω ⊂ Rn,∫
Ω

∇ · F dV =

∮
∂Ω

F · n dS.

• Stokes Theorem: For a vector field F on a surface S ⊂ R3,∫
S

(∇× F) · n dS =

∮
∂S

F · dl.

In the category of differential forms Ω(M), the Stokes theorem is an isomor-
phism in the de Rham complex, reflecting the exactness of the sequence:

· · · → Ωk−1(M)
d−→ Ωk(M)

d−→ Ωk+1(M) → · · · .

This isomorphism connects local differential structures to global integral struc-
tures, enabling the derivation of integral representations for PDE solutions.

2.3 de Rham Theorem and Complex

Definition 2.2 (de Rham Complex). Let M be a smooth manifold. The de
Rham complex is the cochain complex of differential forms:

Ω•(M) : Ω0(M)
d−→ Ω1(M)

d−→ Ω2(M)
d−→ · · · ,

where Ωk(M) is the space of smooth k-forms, and d is the exterior derivative,
satisfying d◦d = 0. The de Rham cohomology is the cohomology of this complex:

Hk
dR(M) =

ker(d : Ωk(M) → Ωk+1(M))

im(d : Ωk−1(M) → Ωk(M))
.
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Theorem 2.2 (de Rham Theorem). For a smooth manifold M , the de Rham
cohomology Hk

dR(M) is isomorphic to the singular cohomology Hk(M ;R) with
real coefficients:

Hk
dR(M) ∼= Hk(M ;R).

The isomorphism is induced by the integration map:

ω 7→
(
σ 7→

∫
σ

ω

)
,

where σ : ∆k →M is a singular k-simplex [4].

In the category of sheaves on M , the de Rham complex is a complex of
abelian sheaves:

B̄kR = (C∞(−,R) ddR−−→ Ω1(−)
ddR−−→ · · · ddR−−→ Ωkclosed(−)).

The de Rham theorem establishes an equivalence in the derived category of
sheaves, linking differential forms to topological invariants. In synthetic dif-
ferential geometry, this complex is internalized in a smooth topos, where the
Kock-Lawvere axiom ensures the existence of infinitesimals, facilitating intu-
itive reasoning about differentials [6].

2.4 Simplicial de Rham Complex

Definition 2.3 (Simplicial de Rham Complex). Let X• : ∆op → Diff be a
simplicial manifold in the category of smooth manifolds Diff . The simplicial de
Rham complex is the total complex of the double complex:

Ωp(Xq)
∑

i(−1)iδ∗i−−−−−−−→ Ωp(Xq+1),

Ωp(Xq)
ddR−−→ Ωp+1(Xq),

where δi : Xq+1 → Xq are face maps, and ddR is the de Rham differential [7].

The simplicial de Rham complex is quasi-isomorphic to the Chevalley-Eilenberg
algebra of the infinitesimal path ∞-groupoid Πinf(X•), reflecting the structure
of a geometric ∞-Lie groupoid. This complex is crucial for equivariant de Rham
cohomology and rational homotopy theory, where:

C∞(Πinf(X•)) ≃ TotΩ•(X•).

2.5 Synthetic Differential Geometry: Axiomatic Frame-
work

Definition 2.4 (Smooth Topos). A smooth topos T is a topos equipped with
a line object R satisfying the Kock-Lawvere axiom: for any f : D → R, where
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D = {x ∈ R | x2 = 0} is the infinitesimal object, there exist unique a, b ∈ R
such that:

f(x) = a+ bx for all x ∈ D.

A smooth topos models synthetic differential geometry, allowing intuitive rea-
soning with infinitesimals.

In a smooth topos, the integration axiom posits that the shape modality
∫

and flat modality ♭ define a cohesive structure:∫
⊣ ♭ ⊣ ♯.

The de Rham complex in synthetic differential geometry is internalized as a com-
plex of objects in T, where differential forms are morphisms from infinitesimal
thickenings. The integration map in this context is a morphism:∫

: Ωk(M) → Ωk(

∫
M),

inducing a synthetic analogue of the de Rham theorem.

2.6 Integral Equations: Operator Algebras

Definition 2.5. Let E be a Hilbert space, and let K : E → E be a compact
linear operator.

• A Fredholm integral equation of the second kind is:

u = f + λKu,

where f ∈ E, λ ∈ C, and u ∈ E.

• A Volterra integral equation of the second kind is:

u(x) = f(x) + λ

∫ x

a

K(x, ξ)u(ξ) dξ,

where the integral has a variable upper bound.

The kernel K(x, ξ) is often the Green’s function G(x, ξ) or its derivatives.
For a PDE Lu = f with boundary conditions, the solution may satisfy:

u(x) =

∫
Ω

G(x, ξ)f(ξ) dξ +

∫
∂Ω

K(x, ξ)u(ξ) dS.

In synthetic differential geometry, such equations are internalized as morphisms
in T, with K defined via the infinitesimal structure of R.
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2.7 Structural Unity: Local-Global Duality

The categorical framework unifies these concepts:

• Green’s functions are kernels in Hom(F∗,E).

• Stokes–Ostrogradsky theorems are isomorphisms in the de Rham complex.

• The de Rham theorem links differential forms to singular cohomology via
integration.

• Simplicial de Rham complexes extend this to ∞-groupoids.

• Synthetic differential geometry provides an axiomatic framework for in-
finitesimals and integration.

• Fredholm and Volterra equations are algebraic representations of these
morphisms.

This reflects a local-to-global duality, where PDE solutions are cohomology
classes in the derived category of sheaves or modules over the ring of differential
operators [4, 6].

3 Swarm Coordination Applications

Swarm coordination involves a collection of agents interacting locally to produce
emergent global behaviors without centralized control, modeled as a dynamic
system using differential equations [?]. This taxonomy classifies swarm models
within a categorical framework, leveraging topological spaces, distributions, and
homological structures to unify local and global dynamics.

3.1 Swarm Models as Dynamical Systems

Definition 3.1. A swarm is a collection of autonomous agents in a manifold
M (e.g., Rd) governed by local interaction rules, producing emergent global be-
havior. The dynamics are modeled as a system of differential equations in the
category Man of smooth manifolds or Vect of vector spaces.

3.2 Cucker–Smale Model

Definition 3.2. The Cucker–Smale model describes N agents with positions
xi(t) ∈ Rd and velocities vi(t) ∈ Rd:

ẋi = vi, v̇i =

N∑
j=1

aij(x)(vj − vi),

where aij(x) = K
(σ+∥xi−xj∥2)γ is the interaction weight, and K,σ, γ > 0 are

parameters [8].
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Remark 3.1. Adaptive control extends the model to handle uncertainties:

v̇i =

N∑
j=1

âij(t)(vj − vi) + ui(t),

where âij(t) are adaptively updated weights, and ui(t) compensates for distur-
bances [9].

Applications include UAV formation control, robotic swarms, and biological
flocking [10].

3.3 Vicsek Model

Definition 3.3. The Vicsek model describes self-propelled particles moving at
constant speed with alignment:

ẋi = vi, vi(t+∆t) = |vi|
∑
j∈Ni

vj

|
∑
j∈Ni

vj |
+ ηi,

where Ni is the set of neighbors within a radius, and ηi is random noise [11].

Suitable for noisy environments but less precise for controlled swarms.

3.4 Alignment-Attraction-Avoidance (AAA) Model

Definition 3.4. The AAA model combines three forces:

ẋi = vi, v̇i = α
∑
j∈Ni

(vj − vi) + β
∑
j∈Ni

(xj − xi)− γ
∑
j∈Ni

(xi − xj)

|xi − xj |2
,

where α, β, γ control alignment, attraction, and avoidance [12].

Used in biological swarms and robotic coordination [15].

3.5 SwarmDMD: Data-Driven Model

Definition 3.5. SwarmDMD uses dynamic mode decomposition to learn inter-
agent interactions from observed data, reconstructing swarm dynamics without
explicit first-principles modeling [13].

Ideal for reconstructing unknown dynamics but limited for real-time control.

3.6 Hierarchical D-DRL Model

Definition 3.6. The double-layer deep reinforcement learning (D-DRL) model
uses inner-layer agents for execution and an outer-layer manager for coordina-
tion, modeled as a hybrid system of ODEs and discrete control laws [14].

Suitable for complex tasks but partially centralized.
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3.7 Topological and Functional Spaces

Definition 3.7. Swarm dynamics occur in:

• Topological Spaces: Define continuity of agent interactions.

• Metric Spaces: Define proximity-based interactions (e.g., aij(x)).

• Hilbert Spaces: L2(Ω) for mean-field PDE models.

• Fréchet Spaces: C∞(Ω) for smooth solutions.

The communication topology is a graph G(t) = (V,E(t)), where vertices V
are agents, and edges E(t) are proximity-based connections [15].

3.8 Distributions

Definition 3.8. A distribution T ∈ D′(Ω) is a continuous linear functional
on C∞

c (Ω). For swarm coordination, distributions (e.g., δξ) model singular
interactions like local sensing [3].

Distributions enable modeling of singular forces in PDE-based swarm models
(e.g., Dirac delta for collision avoidance).

3.9 PDEs for Large Swarms

Definition 3.9. For large swarms, the mean-field approximation yields PDEs
classified:

• Elliptic: Equilibrium configurations (e.g., ∆u = 0).

• Parabolic: Diffusion-like spreading (e.g., ∂u∂t = ∆u).

• Hyperbolic: Wave-like propagation (e.g., ∂
2u
∂t2 = ∆u).

The Vicsek model’s mean-field limit is a hyperbolic PDE for density evolu-
tion [11].

3.10 Cucker–Smale with Adaptive Control

The Cucker–Smale model with adaptive control is recommended for its balance
of simplicity, scalability, and robustness:

• Scalability : Handles large N via proximity graphs.

• Decentralization: Local rules ensure distributed coordination.

• Robustness: Adaptive control handles uncertainties.

• Applications: UAV swarms, robotic coordination, biological flocking.
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In the category Man of smooth manifolds, agents are points, and their dy-
namics are morphisms defined by the Cucker–Smale equations. The interaction
graph G(t) = (V,E(t)) induces a simplicial structure, where the simplicial de
Rham complex Ω•(X•) models collective behavior as cohomology classes, link-
ing local velocity alignments to global swarm cohesion [7]. In a smooth topos T,
the infinitesimal interactions (e.g., singular forces modeled by distributions δξ)
are internalized via the Kock-Lawvere axiom, providing a synthetic framework
for adaptive control laws [6].

3.11 Comparison of Swarm Models

Model Scalability Robustness Computational Complexity
Cucker–Smale High (proximity graphs) High (with adaptive control) Moderate (ODE-based)
Vicsek Moderate (noise limits) Moderate (stochastic) Low (discrete updates)
AAA High (local rules) Moderate Moderate (multiple forces)
SwarmDMD Low (data-driven) Low (no control) High (data processing)
D-DRL Moderate (hierarchical) High (learning-based) High (RL training)

4 Swarm Modeling and Simulation Architecture

The simulation of large-scale drone swarms, as implemented in the Link32 pro-
tocol, requires efficient and scalable numerical models to capture the dynamics
of 256 to 50,000 drones operating in a shared environment. Two complemen-
tary approaches are employed: a discrete ordinary differential equation (ODE)
model for individual drone tracking and a continuum partial differential equa-
tion (PDE) model for approximating swarm behavior as a density field. These
models are implemented in the skynet ode.c and skynet pde.c codes, respec-
tively, using the PETSc library for parallel numerical computations.

4.1 Swarm Modeling Approaches

4.1.1 Discrete ODE Model

The ODE model represents each drone as an individual agent with position
xi(t) and velocity vi(t) in a 1D or 2D domain, governed by a system of ordinary
differential equations:

dxi
dt

= vi,
dvi
dt

= ui + fenv,i + fswarm,i,

where ui is the control input from the Skynet/Link32 protocol (e.g., velocity
adjustments via UDP packets), fenv,i is an environmental force (e.g., wind),
and fswarm,i accounts for inter-drone interactions, such as repulsion to avoid
collisions. The repulsion term fswarm,i is defined as a sum over all other drones
j ̸= i. If the distance between drones i and j, denoted ∥xi − xj∥, is less than a
minimum threshold rmin, the repulsion force is:
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fswarm,i,j =
κ(rmin − ∥xi − xj∥)

∥xi − xj∥+ ϵ
,

where κ = 0.05, rmin = 1.0, and ϵ = 10−6 ensures numerical stability.
Otherwise, if ∥xi − xj∥ ≥ rmin, the repulsion force is zero. The total repulsion
force is:

fswarm,i =
∑
j ̸=i

fswarm,i,j .

This model is suitable for smaller swarms (e.g., 256 drones) where individual
tracking is feasible and integrates directly with Skynet/Link32 control signals
for precise drone coordination.

4.1.2 Continuum PDE Model

For large swarms (up to 50,000 drones), a continuum approach is adopted,
treating the swarm as a density field ρ(x, y, t) with an associated velocity field
ux(x, y, t). The dynamics are governed by a system of partial differential equa-
tions, comprising a continuity equation for density conservation and a momen-
tum equation for velocity evolution:

∂ρ

∂t
+∇ · (ρu) = 0,

∂ux
∂t

= fcontrol + fenv,

where u = (ux, 0) is the velocity field (simplified to 1D flow for initial test-
ing), fcontrol represents Skynet/Link32 control inputs (e.g., density-based ve-
locity adjustments), and fenv is an environmental force field (e.g., wind, set to a
constant 0.1 in initial simulations). The PDE model is discretized on a 2D grid
(e.g., 100×100) using finite differences, with the divergence term approximated
as:

∇ · (ρux) ≈
(ρux)i,j − (ρux)i−1,j

∆x
.

This approach is computationally efficient for large swarms, capturing col-
lective behavior while integrating Skynet/Link32 control signals to guide the
swarm density and velocity fields.

4.2 Architecture of Simulation Codes

Both skynet ode.c and skynet pde.c are implemented using the PETSc li-
brary, leveraging its parallel data structures and time-stepping solvers to ensure
scalability across multiple MPI processes. The codes are designed to interface
with the Skynet/Link32 protocol, which provides control inputs via UDP pack-
ets for real-time swarm coordination.
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4.2.1 skynet ode.c Architecture

The skynet ode.c code simulates the discrete ODE model for individual drone
dynamics. Its key components are:

• Data Structure: A global vector X of size 2N (where N is the number
of drones, e.g., 17 in the test case) stores positions xi and velocities vi.
An additional vector envdata holds environmental forces (e.g., wind, set
to 0.1 per drone).

• RHS Function: The RHSFunction computes the time derivatives dxi

dt =

vi and
dvi
dt = ui+fenv,i+fswarm,i, incorporating repulsion terms to prevent

collisions and Skynet/Link32 control inputs (currently a placeholder, to
be updated with UDP-parsed signals).

• Solver: The PETSc TS solver with the explicit Runge-Kutta method
(TSRK) advances the solution with a time step ∆t = 0.1. The simulation
runs for a short duration (e.g., 1 second) to ensure stability during testing.

• Initialization: Drones are initialized with random positions in a domain
(e.g., [0, 10]) using PetscRandom, with zero initial velocities.

• Output: The final state is written to skynet ode.txt, containing posi-
tion and velocity pairs for each drone (e.g., 34 values for 17 drones).

• Parallelism: The code supports MPI parallelism, distributing drones
across processes, though the test output indicates a single process, sug-
gesting a configuration to be optimized for larger swarms.

The code is designed for scalability, with plans to increase N to 256 or 50,000
drones by optimizing MPI distribution and integrating Skynet/Link32 control
logic.

4.2.2 skynet pde.c Architecture

The skynet pde.c code implements the continuum PDE model on a 2D grid.
Its architecture includes:

• Data Structure: A distributed array (DMDA) manages a 2D grid (e.g.,
10×10 in testing, scalable to 100×100) with 2 degrees of freedom per grid
point (ρ, ux). A global vector U stores the state, and a separate vector
envdata holds environmental forces (e.g., wind, set to 0.1 per grid point).

• RHS Function: The RHSFunction computes the time derivatives: ∂ρ
∂t =

−∇· (ρux) using finite differences, and ∂ux

∂t = fcontrol+ fenv, with fcontrol
as a placeholder for Skynet/Link32 inputs.

• Solver: The PETSc TS solver with the explicit Runge-Kutta method
(TSRK) advances the solution with ∆t = 0.01. The simulation runs for a
short time (e.g., 0.1 seconds) to verify stability.
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• Initialization: The density ρ is initialized as a Gaussian blob centered
at (50, 50) in a 100 × 100 domain, ρ(x, y) = e−((x−50)2+(y−50)2)/10, with
zero initial velocity.

• Output: The final state is written to skynet pde.txt, containing density
and velocity values (e.g., 200 values for a 10× 10× 2 grid).

• Parallelism: The DMDA structure supports MPI parallelism, distributing
the grid across processes, though the test output indicates a single process,
requiring optimization for larger grids.

The PDE code is designed to scale to larger grids (e.g., 100 × 100) and
integrate Skynet/Link32 control signals to adjust the velocity field based on
swarm density or external inputs.

4.3 Future Enhancements

Both codes are currently stable for small-scale tests (17 drones for ODE, 10×10
grid for PDE). Future work includes:

• Scaling the ODE model to 256–50,000 drones with optimized MPI paral-
lelism.

• Increasing the PDE grid to 100× 100 or larger for large swarms.

• Integrating Skynet/Link32 control logic, parsing UDP packets for real-
time control inputs (e.g., target positions or velocity fields).

• Developing a hybrid ODE-PDE model using PETSc’s DMComposite to
combine individual drone tracking with continuum density modeling.

These enhancements will ensure the simulation framework supports the full
range of swarm sizes and integrates seamlessly with the Skynet/Link32 protocol
for real-time drone swarm coordination.

5 Conclusion

This article synthesizes the theory of partial differential equations (PDEs) and
their applications to swarm coordination within a categorical and topological
framework. Green’s functions, Stokes–Ostrogradsky theorems, de Rham com-
plexes, and synthetic differential geometry provide a unified perspective on local-
to-global duality, with PDE solutions represented as cohomology classes in the
derived category of sheaves. Classification of elliptic, parabolic and hyperbolic
equations guides solution methods via integral equations, while distributions
model singular interactions. Swarm coordination, modeled as a dynamic sys-
tem, leverages the Cucker–Smale model with adaptive control for its scalability
and robustness in applications like UAV swarms, robotic coordination, and bi-
ological flocking. This taxonomy bridges operational, categorical, and applied
perspectives, offering a rigorous framework for analyzing complex systems [6, 4].
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