Issue XXXIV: Grothendieck Schemes

Namdak Tonpa

May 23, 2025

Abstract

We present Grothendieck's functorial definition of schemes as sheaves on the category of affine schemes, structured according to the functor of points perspective. We also outline a path toward formalizing these objects within Homotopy Type Theory (HoTT).

1 Grothendieck Schemes

We view schemes as **sheaves on the category of affine schemes**, satisfying a gluing condition analogous to the usual descent condition in topology.

1.1 Affine Schemes

Let:

$$\mathbf{Aff} := (\mathbf{CRing})^{\mathrm{op}}$$

denote the category of affine schemes, i.e., the opposite of the category of commutative rings.

An affine scheme is of the form Spec(A), for a commutative ring A.

1.2 Zariski Covers

A presheaf of sets on Aff is a functor:

$$F : \mathbf{Aff}^{\mathrm{op}} \to \mathbf{Set}.$$

This is the *functor of points* perspective: each affine scheme Spec(A) represents the "test ring" A, and F(Spec(A)) can be thought of as the A-points of F.

A **Zariski sheaf** is a presheaf that satisfies descent for Zariski covers: if $\{\operatorname{Spec}(A_{f_i}) \to \operatorname{Spec}(A)\}$ is a Zariski open affine cover, then the diagram

$$F(\operatorname{Spec}(A)) \to \operatorname{Eq}\left(\prod_{i} F(\operatorname{Spec}(A_{f_i})) \rightrightarrows \prod_{i,j} F(\operatorname{Spec}(A_{f_if_j}))\right)$$

is an equalizer diagram.

1.3 Grothendieck Scheme

A scheme is a Zariski sheaf

$$F:\mathbf{Aff}^{\mathrm{op}}\to\mathbf{Set}$$

such that:

- There exists a Zariski cover $\{U_i \to F\}$ where each U_i is representable, i.e., $U_i \cong \text{Spec}(A_i)$ for some ring A_i .
- Each morphism $U_i \to F$ is an **open immersion** (in the sheaf-theoretic sense).

This means F is locally isomorphic to affine schemes and satisfies Zariski descent.

Equivalently: Schemes are Zariski sheaves on Aff that are locally representable by affine schemes.

1.4 Formalization in HoTT

Categories and Presheaves in HoTT

In HoTT, a category can be defined as a type of objects together with types of morphisms and operations satisfying associativity and identity laws up to higher homotopies. A presheaf is then a functor:

 $F: \mathcal{C}^{\mathrm{op}} \to \mathcal{U}_0$

where \mathcal{U}_0 is the universe of 0-types (sets). For $\mathcal{C} = \mathbf{Aff}$, this gives us the functor-of-points view.

Sheaf Conditions in HoTT

A sheaf in HoTT is a presheaf that satisfies a descent condition with respect to a Grothendieck topology, formalized via homotopy limits or truncations, depending on the level of the types involved.

Defining Schemes in HoTT

Within HoTT, a scheme is a sheaf $F : \mathbf{Aff}^{\mathrm{op}} \to \mathcal{U}_0$ satisfying:

- A Zariski descent condition.
- Local representability: there exists a family of open immersions $\{\text{Spec}(A_i) \rightarrow F\}$ covering F.

This mirrors the classical definition but is grounded in type-theoretic and higher-categorical constructions.

1.5 Conclusion

Grothendieck's functorial approach to schemes provides a clean and general definition that is well-suited for formalization in Homotopy Type Theory. This opens the way for a synthetic and structured foundation for algebraic geometry in type-theoretic settings.