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Abstract

We present Grothendieck’s functorial definition of schemes as sheaves
on the category of affine schemes, structured according to the functor
of points perspective. We also outline a path toward formalizing these
objects within Homotopy Type Theory (HoTT).

1 Grothendieck Schemes

We view schemes as sheaves on the category of affine schemes, satisfying
a gluing condition analogous to the usual descent condition in topology.

1.1 Affine Schemes

Let:
Aff := (CRing)op

denote the category of affine schemes, i.e., the opposite of the category of com-
mutative rings.

An affine scheme is of the form Spec(A), for a commutative ring A.

1.2 Zariski Covers

A presheaf of sets on Aff is a functor:

F : Affop → Set.

This is the functor of points perspective: each affine scheme Spec(A) represents
the ”test ring” A, and F (Spec(A)) can be thought of as the A-points of F .

A Zariski sheaf is a presheaf that satisfies descent for Zariski covers: if
{Spec(Afi) → Spec(A)} is a Zariski open affine cover, then the diagram

F (Spec(A)) → Eq

∏
i

F (Spec(Afi)) ⇒
∏
i,j

F (Spec(Afifj ))


is an equalizer diagram.
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1.3 Grothendieck Scheme

A scheme is a Zariski sheaf

F : Affop → Set

such that:

• There exists a Zariski cover {Ui → F} where each Ui is representable,
i.e., Ui

∼= Spec(Ai) for some ring Ai.

• Each morphism Ui → F is an open immersion (in the sheaf-theoretic
sense).

This means F is locally isomorphic to affine schemes and satisfies
Zariski descent.

Equivalently: Schemes are Zariski sheaves on Aff that are locally repre-
sentable by affine schemes.

1.4 Formalization in HoTT

Categories and Presheaves in HoTT

In HoTT, a category can be defined as a type of objects together with types
of morphisms and operations satisfying associativity and identity laws up to
higher homotopies. A presheaf is then a functor:

F : Cop → U0

where U0 is the universe of 0-types (sets). For C = Aff , this gives us the
functor-of-points view.

Sheaf Conditions in HoTT

A sheaf in HoTT is a presheaf that satisfies a descent condition with respect
to a Grothendieck topology, formalized via homotopy limits or truncations, de-
pending on the level of the types involved.

Defining Schemes in HoTT

Within HoTT, a scheme is a sheaf F : Affop → U0 satisfying:

• A Zariski descent condition.

• Local representability: there exists a family of open immersions {Spec(Ai) →
F} covering F .

This mirrors the classical definition but is grounded in type-theoretic and
higher-categorical constructions.
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1.5 Conclusion

Grothendieck’s functorial approach to schemes provides a clean and general
definition that is well-suited for formalization in Homotopy Type Theory. This
opens the way for a synthetic and structured foundation for algebraic geometry
in type-theoretic settings.
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