[ssue XXXVII: Simplicial Type Theory

Maksym Sokhatskyi '

! National Technical University of Ukraine
Igor Sikorsky Kyiv Polytechnical Institute
23 tpaBuga 2025 p.

Amnoranis

We propose a synthetic framework for simplicial homotopy theory wi-
thin homotopy type theory, axiomatizing a directed interval type to define
higher simplices and probe the simplicial structure of types. We introduce
Segal types, where binary composites are unique up to homotopy, ensuring
coherent associativity; Rezk types, where categorical isomorphisms coi-
ncide with type-theoretic identities; and Kan types, satisfying a horn-
filling condition modeling co-groupoids. We define covariant fibrations as
functorial type families and prove a dependent Yoneda lemma, providi-
ng a directed analogue of identity elimination. Semantically, our types
correspond to Segal spaces, complete Segal spaces, and Kan complexes
in bisimplicial sets, offering a synthetic language for simplicial homotopy
theory.

Keywords: Simplicial Homotopy Theory

3mMmicT

|1 _Simplicial Homotopy Type Theory|
1.1 Simplicia €S| . e
1.1.1 ecal Types|.
I1.1.2 Rezk Types| o o
I1.1.3 Kan Types| oo

[1.3 _Synthetic Categorical Structures|

|1.§ Sznthetic oo-categories|.

[1.4.2 Shape Cubes| 10
I1.4.3 Shape Topes| L. 11
1.4.4 Extension Types| 12
[1.4.5 Universe Types| 13
1.5 Simplicial Type Theory| 15
I1.5.1 Judgments| 15

O 00 O O UL U i i W

1.5.3 Dependent Function Types (IT-Types)| 15
1.5.4 Dependent Pair Types (X-Types)[. 16
55 Universesl o v v vt 16
1.5.6 Interval Type (I)] 16
1.5.7 Modal Types (WA« « v v v vve e 17
[I.5.8 Modal TTI-Types| 17
11.5.9 Precategory and Category Types| 18
11.5.10 Key Theorems| 18

1 Simplicial Homotopy Type Theory

Homotopy type theory (HoTT) [1] extends Martin-Lof type theory with axioms,
such as the univalence axiom, enabling it to serve as a synthetic language for
oo-groupoids, as modeled by simplicial sets in Voevodsky’s model [2]. This paper
develops a synthetic simplicial homotopy theory within HoTT, focusing on three
flavors: Kan complexes (modeling co-groupoids), Segal spaces (modeling weak
categories), and complete Segal spaces or quasi-categories (modeling (oo, 1)-
categories).

In standard HoTT, types are synthetic oco-groupoids, with identity types
providing paths and higher homotopies. However, simplicial homotopy theory
requires richer structures, such as directed arrows and compositions, as in Segal
or Rezk spaces. Following [3], we interpret HoTT in the Reedy model structure
on bisimplicial sets, where types are simplicial spaces, and identify specific
types—Segal, Rezk, and Kan types—corresponding to Segal spaces, complete
Segal spaces, and Kan complexes, respectively.

Our approach axiomatizes a directed interval type 2, a strict totally ordered
set with endpoints 0,1 : 2, modeled by the simplicial 1-simplex A" in the
categorical direction of bisimplicial sets [4]. This allows us to define higher si-
mplices, e.g., A> = {(s,t): 2 x 2| t < s}, and probe the simplicial structure of
types via maps A™ — A.

We define:

e Segal types, where composable arrows have contractible spaces of composi-
tes, ensuring categorical coherence.

o Rezk types, Segal types where isomorphisms are equivalent to identities,
modeling quasi-categories.

e Kan types, where horn inclusions Al* — A™ lift uniquely up to homotopy,
modeling oco-groupoids.

We study functors (type-theoretic functions), natural transformations (A x
2 — B), and covariant fibrations (functorial type families), proving a dependent
Yoneda lemma. In Appendix A, we show that our types correspond to their
semantic counterparts in bisimplicial sets, leveraging the Reedy and Rezk model
structures.

This synthetic framework simplifies reasoning about simplicial homotopy
theory, as type-theoretic operations are automatically functorial, mirroring the
internalization benefits of [3].

1.1 Simplicial Types

We extend HoT'T with a strict interval type 2, a totally ordered set with di-
stinct elements 0,1 : 2, satisfying the coherent theory of a strict interval [5l [6].
Semantically, 2 is the simplicial 1-simplex A' in the categorical direction of
bisimplicial sets.

Definition 1. The strict interval 2 is equipped with:

0,1:2, distinct endpoints,
<:2x2—>U, total order, with 0 < 1.

Higher simplices are defined internally:
A" ={(s1,...,80) 12" |51 <55 < --- <sp ke

For example, A> = {(s,t) : 2x 2|t < s}. A map « : A> — A represents a
commutative triangle in A, with edges At.o(t,0), At.x(1,1), and At.o(t,).

We use extension types to define hom-types. For x,y : A, the type of arrows
from x to y is:

homa (x,y) := < IT uifonn= 2> {f(0) =x,f(1) =y},

f:2—5A

where {0, 1} < 2 is a cofibration, and the type family enforces f(0) = x, (1)
judgmentally, avoiding identity type data [3].

Y

1.1.1 Segal Types

Segal types model synthetic Segal spaces, where composition is unique up to
homotopy.

Definition 2. A type A is a Segal type if, for any composable arrows f,g:2 — A
with f(1) = g(0), the type of composites

>) (ta(t,0) =) x (M.x(1,1) = g) x (At.(t,t) =h)

h:2—A a:2—A
is contractible.

This ensures that composition is associative and unital up to all higher
homotopies, as the contractibility condition implies the Segal map ALY

1 T . e .
A? X A0 A2 is an equivalence in bisimplicial sets.

Theorem 1. In a Segal type A, composition is coherently associative and unital.

Jlosedenns. The contractibility of the composite type implies that the Segal
maps for higher simplices (e.g., AL’y AN X A a0 AL X A a0 AA]) are equi-
valences, ensuring associativity and unit laws hold up to homotopy, as in [7]. O

1.1.2 Rezk Types

Rezk types model complete Segal spaces, where isomorphisms coincide with
identities.

Definition 3. A Segal type A is a Rezk type if the type of isomorphisms

isoa (x,y) := Z Z (inverses up to homotopy)
f:homa (x,y) g:homa (y,x)

is equivalent to the identity type x =y.

This “local univalence” condition ensures A models a quasi-category, where
invertible arrows are precisely paths.

Theorem 2. Rezk types correspond to complete Segal spaces in the Rezk model
structure on bisimplicial sets.

Zlosedenns. The completeness condition corresponds to the map AEDA®
AA°DA° being a trivial fibration, as in [3], matching Definition A.24 of the
original paper. O
1.1.3 Kan Types

Kan types model synthetic Kan complexes, satisfying a horn-filling condition.

Definition 4. A type A is a Kan type if, for alln > 1 and 0 < i < n, the horn
inclusion Al* — A™ induces a contractible type of fillers:

>) (g=fou.

f: AT A gAT—A

Kan types model oco-groupoids, as every horn has a unique filler up to
homotopy, corresponding to Kan complexes in simplicial sets.

Theorem 3. Kan types are Segal types, and every Kan type is a Rezk type.

osedenns. The Kan condition implies the Segal condition, as horn-filling for
/\% ensures unique composites. The Kan condition also implies all arrows are
invertible, satisfying the Rezk completeness condition trivially. O

1.2 Covariant Fibrations and the Yoneda Lemma

We define covariant fibrations as functorial type families over Segal types.

Definition 5. A type family C : A — U over a Segal type A is a covariant
fibration if, for any a: A, C(a) is a Kan type, and for any f : homa (a, b), there
is a transport map C(f) : C(a) — C(b) satisfying functoriality up to homotopy.

Theorem 4 (Dependent Yoneda Lemma). For a covariant fibration C: A — U
and a: A, there is an equivalence

C((l) = homFibA (y(fl)» C)»

where y(a) : A — U, y(a)(b) = homa (a,b), is the Yoneda embedding, and
Fiba is the type of covariant fibrations over A.

JHosedenna. The proof follows [3], constructing a natural equivalence via the
contractibility of hom-types and functoriality of C, internalized in the type
theory. O

1.3 Synthetic Categorical Structures

We extend the framework to include synthetic analogues of categorical
structures, such as natural transformations, adjunctions, limits, and discrete
types, which enrich the simplicial homotopy theory.

Definition 6. For Segal types A,B and functors ;G : A — B (i.e., type-
theoretic functions preserving Segal structure), a natural transformation 1 :
F — G is a map

n:] [homg(F(a),G(a)),
a:A

such that for any f : homa(a,a’), the following diagram commutes up to
homotopy:

Fla) /2 G(a)

lF(f) lG(f)
)

Fla’) - G(a’

Theorem 5. For Segal types A,B, the type of natural transformations
]_[F)G:A_}B [1,.A homg(F(a),G(a)) is a Segal type.

Jlosedenns. The naturality condition ensures that the type of transformations
satisfies the Segal condition, as the hom-types homg (F(a), G(a)) are contractible
for composable arrows, and the functoriality of F, G preserves this structure,
following [7]. O

Definition 7. For Segal types A, B, an adjunction consists of functors F: A —
B, G:B — A, and natural transformations

n:ida — GoF unit,
€:FoG —idg, counit,

satisfying the triangle identities up to homotopy:
(Ge) o (nG) ~idg, (eF)o (Fn) ~idf.

Theorem 6. An adjunction (F,G,n,€) between Segal types A,B induces an
equivalence
homg (F(a),b) ~ homa (a, G(b))

forall a: A, b:B.

Jlosedenns. The unit and counit induce a bijection on hom-types via the tri-
angle identities, which holds up to homotopy in the Segal type structure, mi-
rroring the categorical adjunction in [4]. O

Definition 8. For a Segal type A and a diagram D : I — A (where I is a Segal
type), a limit of D is a Kan type L with a natural transformation 7t : consty — D
such that, for any Kan type X and natural transformation o : constx — D, there
exists a unique map f: X — L with 7t o consts ~ o.

Theorem 7. In a Rezk type A, the limit of any diagram D : I — A is a Kan
type.

Jlosederns. The limit L inherits the Kan condition from the fibers of the
projection 7, as Rezk types ensure isomorphisms are identities, and the universal
property enforces contractibility of the mapping space, as in [3]. O

Definition 9. A type A is discrete if its identity types a =A b are propositions
(0-truncated), i.e., for all a,b: A and p,q:a =a b, we have p = q.

Theorem 8. For any discrete type A, there exists a Segal type A and an
embedding i: A — A such that homy (i(a),i(b)) ~ (a =a b).

Jlosedenns. Construct A as the Segal type generated by A with hom-types
homg (i(a),i(b)) := (a =a b), which is contractible for a = b and empty
otherwise, satisfying the Segal condition and embedding A via the Yoneda
lemma, as in [2]. O

1.4 Synthetic co-categories
1.4.1 Strict Interval
Definition 10 (Interval Formation). The strict interval type is formed as:
' ctx
r=2:U

def Interval form : U := 2

Definition 11 (Interval Introduction). Endpoints and order are introduced:

" ctx I' ctx Nes,t:2
Fr'0:2 TH1:2 TrEs<t:U

def Interval intro 0 : Interval form :=0
def Interval intro_1 : Interval form :=1
def Interval order (s t: Interval form) : U :=s <t

Definition 12 (Interval Elimination). The interval is eliminated by case
analysis:
Nla:2 THFC:2-5U Thkco:C0) Thkcy:C(1)
't indz(a, Ax.C(x),co,c1) : C(a)

def Interval elim (C: Interval form —> U)
(c0: C Interval intro 0) (cl: C Interval intro 1) (a: Interval form)
: Ca :=split { 0-—>¢c0 | 1-—>cl}

Theorem 9 (Interval Computation). Elimination reduces on endpoints:

FrEC:2—5U Thceo:C0) They:C(1)
' ind2 (0, Ax.C(x),co,c1) = co : C(0)

N'-C:2—-U Tkc¢y:C(0) Trkey:C(1)
't indz (1, Ax.C(x), co,c1) = ¢1 : C(1)

def Interval comp 0 (C: Interval form —> U)
(c0: C Interval intro 0) (cl: C Interval intro 1)
: Z (C Interval intro 0)
(Interval elim C c0 ¢l Interval intro_ 0) cO
:= refl (C Interval intro 0) cO

def Interval comp 1 (C: Interval form —> U)
(c0: C Interval intro 0) (cl: C Interval intro 1)
: 2 (C Interval_intro_1)
(Interval elim C c¢0 ¢l Interval intro 1) cl
:= refl (C Interval intro_ 1) cl

Theorem 10 (Interval Uniqueness). Elimination is unique for dependent types:

MFa:2 TFC:2—U Tkc:Cla)
't ¢ =indz(a,Ax.C(x), c[0/x],c[1/x]) : C(a)

def Interval uniq (C: Interval form —> U) (a: Interval form) (c: C a)
(C a) ¢ (Interval elim C (c[0/x]) (c[l/x]) a)

= refl (C a) c

1.4.2 Shape Cubes
Definition 13 (Cube Formation). Cube types are formed for shapes:

= cube ctx Zcubectx ZFI:Cube ZF]J:Cube
ZF1:Cube ZF1:Cube =k Ix]J:Cube

def Cube_form_ I : Cube :=1
def Cube form unit : Cube :=1
def Cube_form_prod (I J: Cube) : Cube :=1 x J

Definition 14 (Cube Introduction). Cube terms are introduced:

Zcubectx Zks:I =ZFt:]
Zhx: ZE(s,t): Ix]

def Cube intro unit : Cube form unit := *
def Cube_intro_ pair (I J: Cube) (s: I) (t: J)
: Cube_form_prod I J := <s, t>

Definition 15 (Cube Elimination). Cube projections extract components:

ZHEt:Ix] ZFt:Ix]
SEmit) T ZEm(t)]

def Cube elim fst (I J: Cube) (t: Cube form prod I J) : I
def Cube _elim snd (I J: Cube) (t: Cube form prod I J) : J

Mt
Ty t

10

1.4.3 Shape Topes

Definition 16 (Tope Formation). Tope types encode logical constraints:

= cube ctx = cube ctx Zks,t:l

ZFET:Tope ZF L:Tope ZFs=t:Tope
ZF¢:Tope ZFHP:Tope =ZF d:Tope =ZF:Tope

ZF & AP : Tope ZF ¢ VU : Tope

def Tope form true : Tope :=T
def Tope form false : Tope := L
def Tope form eq (I: Cube) (s t: I) : Tope :=
def Tope form and (¢ ¢: Tope) : Tope := @ A
def Tope form or (@ P: Tope) : Tope := ¢ V |

s =t

Definition 17 (Tope Introduction). Tope entailments are introduced:
ZFd:Tope ZFs=t:Tope
ZSEFd=>T Zks=t=t=s
Zks=t ZFt=u ZF¢:Tope ZFV:Tope ZHP=>V ZHFYP=x
ZkFs=u ZFd=x

def Tope intro true (@: Tope) : ¢ =
def Tope intro sym (I: Cube) (s t: I
Tope form eq I t s

= A p, sym p
def Tope intro trans (I: Cube) (s t u: I)

: Tope form eq I s t = Tope form eq I t u= Tope form eq I s u
:= A p q, trans p q

T :=A _, T
) : Tope form eq I s t =

Definition 18 (Tope Disjunction Elimination). Tope disjunction is eliminated
via a pushout-like rule:

ZFoVYP:Tope Z,dFx:Tope Z,PFx:Tope =, édAWYPFx:Tope
= F x : Tope

PAY ———
x|
b —— ¢V

def Tope elim or (¢ P x: Tope)
(cl: @ =x) (c2: b=x) (c3: ¢ A= x)
P VYy=x i=A X

Theorem 11 (Tope Computation). Disjunction elimination reduces on cases:
ZF ¢ :Tope Z,¢ F x: Tope
ZFxlp V/dl =x : Tope

def Tope comp or (@ ¥ x: Tope) (c: ¢ = X)
: Z Tope (Tope elim or @ v x ¢ ¢ ¢) x := refl Tope X

11

1.4.4 Extension Types

Definition 19 (Extension Type Formation). Extension types generalize
dependent functions:

ZFH¢:Tope ZHY:Tope ZHi:¢p—=¢ THC:p—-U l"l—d:]_[x:d)C(i(x))
M (T CW) 1) U

def Ext form (¢ ¥: Tope) (i: @ =) (C: ¢
— U) (d: (x: ¢) = C (i x))
U =41 (y:), Cy | i>

Definition 20 (Extension Type Introduction). Elements are functions satisfyi-
ng boundary conditions:
ZFEd:Tope ZFHYP:Tope ZHi:dp =P
r-C:yv—Uu Fl—f:Hy:q)C(y) F}—p:l_[x:(bf(i(x)) = d(x)
I ext(f,p) : <H,_,,:¢ Cly) | i>

def Ext_intro (¢ ¥: Tope) (i: ¢ =) (C: ¢
—> U) (d: (x: @) —> C (i x))
(£: (v: 9) = Cy) (p: (x: ®) == (C (i x)) (£ (i x)) (d x))
: Ext form @ ¢ i Cd :=ext f p

Definition 21 (Extension Type Elimination). Extension types are applied or
restricted:

F}—e:<]_[y:wC(y)|i> ey Fl—e:<1_[y:q)C(y)|i> Mex:d
'+ app(e,y): C(y) 'k restr(e,x) : C(i(x))

;)q)

¢
o e
xt U

u =,

def Ext elim _app (¢ P: Tope) (i: @ =) (C: P — U)
(d: (x: @) — C (i x)) (e: Ext form o v i Cd) (y: ¥)
: Cy = app e y

def Ext_elim restr (¢ ¢: Tope) (i: ¢ =) (C: v — U)

(d: (x: @) = C (i x)) (e: Ext form o ¢ i Cd) (x: @)
: C (i x) := restr e x

Theorem 12 (Extension Type Computation). Application and restriction
reduce appropriately:

I=f: Hyrlb Cly) Thkp: Hx:cb flix))=d(x) Tky:p
I+ app(ext(f,p),y) = f(y) : Cly)

12

M=~ Hy:lb Cly) Tkp: Hx:cb filx))=d(x) TkEx:¢
I'F restr(ext(f,p),x) = d(x) : C(i(x))

def Ext comp app (¢ P: Tope) (i: @ =) (C: P — U)
(4 (x5 9) > C (i x)) (I (y: ¥) >Cy)

(p: (x: @) =2 (C (i x)) (f (i x)) (dx)) (y:)
= () (Ext_elim _app ¢ v i C d (Ext_intro ¢ ¥

d fp)y) (fy)

refl (Cy) (fy)

def Ext comp restr (¢ 1p: Tope) (i: ¢

(d: (x: @) = C (i x)) (f: (y:)*>CY)

gp& (x: @) = Z (C (i x)) (f (i x)) (dx)) (x: ¢)
5 f p) x) (d x)

p x

i

ma-

(i x)) (Ext_elim restr ¢ Y i C d (Ext_intro ¢ ¥

ha-

Theorem 13 (Extension Type Uniqueness). Extension types are uniquely
determined:

Me: (Tl Cy) 1)
'k e = ext(Ay.app(e, y), Ax.restr(e, x)) : <]_[y:¢ Cy) | i>

def Ext uniq (¢ P: Tope) (i: @ =) (C:
— U) (d: (x: @) — C (i x))
(e: Ext form ¢ ¢ i C d)
: Z (Ext_form @ ¢ i C d) e
(Ext_intro ¢ v i Cd (A y, Ext elim app ¢ ¥ i
(A x, Ext_elim restr ¢ ¥
:= refl (Ext_form ¢ ¢ i C d) e

C
i

dey)
i Cde

x))

1.4.5 Universe Types

Definition 22 (Universe Formation). The universe type is formed as:

I ctx
'k U : Usuce

def Univ_form : U; :=U

Definition 23 (Universe Introduction). Types are elements of the universe:

r'CEA:U
r-A:U

def Univ_intro (A: U) : Univ_form := A

13

Definition 24 (Universe Elimination). Types in the universe are used in type
formation:

FrA: U Ox:AFB:U
METaB:U

def Univ_elim (A: Univ_form) (B: A — U) : Univ_form :=1TI
(x: A), Bx

Theorem 14 (Universe Computation). Universe elimination aligns with type
formation:

'NFA:U x:AFB:U
I'F Univ_elim(A,B) =TI,.AB: U

def Univ_comp (A: U) (B: A — U)
: Z U (Univ_elim A B) (IT (x: A), B x)
= refl U (IT (x: A), B x)

14

1.5 Simplicial Type Theory

This document formalizes the inference rules for Martin-L6f Type Theory
(MLTT) and its extension to Simplicial Type Theory (STT) as presented in
“The Yoneda embedding in simplicial type theory” (2025) by Gratzer, Wei-
nberger, and Buchholtz.

1.5.1 Judgments
The type system uses:
e T Context I is well-formed.
e ['F 5 :A: Substitution 6 maps I' to A.
e ' A type: Type A is well-formed in T.
e 'Ha:A: Term a has type A in T.

1.5.2 Context Formation with Extension
e Modal context extension: F ' = F T} {u}
e Variable annotation: - I T {u} - A type = FLx: A
e Variable rule: p < mods(lh) = To,x:p A, T Fx: A
where mods(I'1) = vgo vy o--- is the composite of modal restrictions {v;} in Iy

(or id if none).

1.5.3 Dependent Function Types (I1-Types)

Definition (Inference Rules):
e Formation: I' - A type,[[x: A+ B type = TI'F[][,.A B type
e Introduction: [Tx:AFb:B = TFAx.b:[[,.A B
e Elimination: ' f:[[, A B,TFa:A = T+ f(a):Bla/x]

e Computation: [x: AFb:BT'Fa:A = T+ (Ax.b)(a) = bla/x] :
Bla/x]

e Uniqueness: 'Ff:[[L.AB = TFA.f(x)=f:[[,.AB

Theorem (Type Safety): For any TI', if I' = [], ., B type and ' F f :
[I,.A B, then for any ' - a : A, there exists a unique b : Bla/x] such that
I'f(a)=b:Bla/x].

Proof Sketch: Formation ensures A, B are well-typed. Introduction constructs f.
Elimination applies f to a. Computation reduces f(a). Uniqueness follows from
the n-rule.

15

1.5.4 Dependent Pair Types (Z-Types)

Definition (Inference Rules):
e Formation: I' - A type,[x: AF B type = '3 ., B type
e Introduction: T'-a:A,T+b:Bla/x] = T+ (a,b):} .. B

e Elimination: [z:) ., B+ Ctype,[x:A,y:Btc:Clx,y)/zl,TFp:
> waB = Thklet (x,y) «—pinc:Clp/z

e Computation: [z : Y B F Ctype,[x:Ayy:BFc:Clx,y)/z,T F
a:ATEDVY:Bla/x] = TF let(x,y) « (a,b)inc = cla/x,b/y] :
Cl(a,b)/z]

e Uniqueness: THEp:} .. B = Tklet (x,y)pin (x,y) =p:3 .o B

Theorem (Fibration Property): ' =} _ ., B type is a fibration in the
locally cartesian closed category of contexts.
Proof Sketch: Formation defines the fibration. Introduction constructs sections.
Elimination performs dependent elimination. Computation ensures coherence.
Uniqueness reflects the universal property.

1.5.5 Universes

Definition (Inference Rules):

e Formation: true = TI'F U; type

Introduction: I'+ A type,level(A) <i — THA: U4

Elimination: '+ A : U; = T+ El(A) type

Computation: ' A : Ui, T F A type = T F El(A) = A type
e Uniqueness: 'FA:U; = TTHFA=EI(A): U

Theorem (Consistency): The hierarchy U; ensures MLTT consistency by
stratifying types.
Proof Sketch: Formation introduces the hierarchy. Introduction embeds types.
Elimination decodes them. Computation ensures idempotence. Uniqueness
guarantees coherence.

1.5.6 Interval Type (I)

Definition[Inference Rules]
e Formation: true = T F I type

e Introduction: true = T'FO0: I, true = ' 1: [THFi:[TFHj: 1 =
FrEiANJ:LTHA:LTHJ: I = THiVj:I

16

e Elimination: [x : I - B type,I" + by : BIO/x],T - by : B[1/x],T}x,y :
IFba:BxAy/x,Lx,y:IFby:BxVy/x,ITti: 1l = TF
I“eC]I(B,bo,bhb/\,bv,i) . B[i/X]

e Computation: (as above) = T I recy(B, bg,b1,ba, by, 0) = by : B[0/x],
..., 'Frec(B,bo,b1,ba, by, iV i) = byli/x,j/yl : BAVy/x]

e Uniqueness: 't f: [[,;B, T+ f(0) = b : B[0/x],...,TFf(xVy)=by:
Blx Vy/x] = T F recy(B,bo,b1,ba, by, 1) unique up to =

Theorem|Bounded Lattice] I forms a bounded distributive lattice, satisfying
[Tiy2(i<§)V (< 1) (Axiom A).
Proof Sketch: Introduction defines lattice operations. Elimination and
computation ensure well-definedness. Uniqueness respects the lattice structure.

1.5.7 Modal Types ({(1|A))
Definition[Inference Rules|
e Formation: [{u} F A type = T'F (u| A) type
e Introduction: [{p}Fa:A = T'Fmod,(a):(u|A)

e Elimination: [x : {(p | A) F Btype,[ly ou A F D
Blmod, (y)/x],[{viFa:{(u|A) = TFlet mod,(y) «+ ain b: Bla/x]

e Computation: [x (u | A) F Btype,ly ou A F b
Blmod, (y)/x],I{voulFa:A = Tt let mody(y) « mod,(a)in b =
bla/y] : Blmod, (a)/x]

e Uniqueness: ' - f : (u | A) — B,[Yy vou A F f(mody(y))
b : Blmod,(y)/x,{v} F a: (u | A) = T F let mod,(y)
a in b unique up to =

T

Theorem|[Modal Equivalence| For p, mod, : A — (i | A) is an equivalence
if mod, (a) =mod, (b) — (1| a =">) is an equivalence (Axiom B).
Proof Sketch: Formation and introduction define the modal type. Elimination
and computation ensure injectivity. Axiom B guarantees surjectivity.

1.5.8 Modal lT-Types
Definition[Inference Rules]
e Formation: I' = A type,[[x:y Al B type = T F HX:uA B type
e Introduction: [x: Atb:B = TEAMb:][, A B
e Elimination: I'F f: HXZ“A B, {utFa:A = T F f(a): Bla/x]
o CE)mp}utation: Nx:y AFb:B,[{njFa:A = T'F (Ax.b)(a) =bla/x] :
Bla/x

17

e Uniqueness: ' f: [, B = THAf(x)=f:]],, AB

Theorem|Pointwise Invertibility] For a category C, if f : [],. (b |
homc (x,y)) is pointwise invertible, then f is globally invertible (Example 2.22).
Proof Sketch: Modal TI-types ensure f respects b. Elimination applies f.
Computation preserves equalities. The b-modality extracts isomorphisms.

1.5.9 Precategory and Category Types
Definition|Inference Rules]

e Formation (Precategory): I' + C type,I" I isSegal(C) : Hx,y,z:C(H —
home(x,y)) X (I = homc¢(y,z)) — home(x,z) = T+ C precategory

e Formation (Category): T' F C precategory,I" F isRezk(C)
Hx,y:C isEquiv(isoxy — (x =y)) = T'F C category
where homc (x,y) = (# | C), isox,y = (b [homc¢(x,y)).
Theorem|Yoneda Embedding] For a category C, there exists a fully faithful
y:C— 6, where C is the precategory of presheaves (4 | C), defined by y(x)(y) =
homc (y, x).

Proof Sketch: Precategory formation defines C. Yoneda uses modal types and f.
Rezk ensures homg(y(x),y(y)) ~ home(x,y).

1.5.10 Key Theorems

¢ Yoneda Lemma: For a category C, homga(y(x),F) — F(x) is an equi-
valence for all x: C, F: (# | C).
Proof Sketch: Uses tw modality and Axiom G for twisted arrow categories.

e Free Cocompletion: C is the free cocompletion of C, i.e., Fun((AI, D) ~
Fun(C, D) for cocomplete D.
Proof Sketch: Modal Tl-types and f define functor categories. Yoneda
ensures universality.

Jlitreparypa

[1] Univalent Foundations Program. Homotopy Type Theory: Univalent
Foundations of Mathematics. http://homotopytypetheory.org/book/,
2013.

[2] Kapulkin, C., LeFanu Lumsdaine, P., Voevodsky, V. The simplicial model
of univalent foundations. arXiv:1211.2851, 2012.

[3] Shulman, M. The univalence axiom for elegant Reedy presheaves. Homology,
Homotopy, and Applications, 17(2):81-106, 2015. arXiv:1307.6248.

[4] Joyal, A., Tierney, M. Quasi-categories vs Segal spaces.
arXiv:math/0607820, 2006.

18

http://homotopytypetheory.org/book/

[5] Johnstone, P. T. On a topological topos. Proc. London Math. Soc., 38:237—
271, 1979.

[6] Mac Lane, S., Moerdijk, I. Sheaves in geometry and logic. Springer, 1994.

[7] Rezk, C. A model for the homotopy theory of homotopy theory. Trans. Amer.
Math. Soc., 353(3):973-1007, 2001. arXiv:math.AT/9811037.

[8] Emily Riehl, Michael Shulman. A type theory for synthetic -categories.
Arxiv. 2017

[9] Daniel Gratzer, Jonathan Weinberger, Ulrik Buchholtz. The Yoneda
embedding in simplicial type theory. Arxiv. 2025

19

	Simplicial Homotopy Type Theory
	Simplicial Types
	Segal Types
	Rezk Types
	Kan Types

	Covariant Fibrations and the Yoneda Lemma
	Synthetic Categorical Structures
	Synthetic -categories
	Strict Interval
	Shape Cubes
	Shape Topes
	Extension Types
	Universe Types

	Simplicial Type Theory
	Judgments
	Context Formation with Extension
	Dependent Function Types (-Types)
	Dependent Pair Types (-Types)
	Universes
	Interval Type (I)
	Modal Types (A)
	Modal -Types
	Precategory and Category Types
	Key Theorems

