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Анотацiя

This article presents formal definitions and theorems for ordinary and
generalized cohomology theories, unstable and stable spectra, and spectral
sequences in Abelian categories, including the Serre, Atiyah-Hirzebruch,
Leray, Eilenberg-Moore, Hochschild-Serre, Filtered Complex, Chromatic,
Adams, and Bockstein spectral sequences. We define slopes, sheets, coordi-
nates, quadrants, complex filtrations, and double complexes. Additionally,
we explore the categorical foundations of cohomology theories and spectra,
including their relationships to algebra, homological algebra, and stable
homotopy theory, through isomorphisms, analogies, and instances.
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1 Stable Homotopy Type Theory

1.1 Ordinary Cohomology Theories
Definition 1. An ordinary cohomology theory on the category of topological
spaces and pairs is a contravariant functor H∗(−;G) : Topop → GrAb, assi-
gning to each pair (X,A) a sequence of abelian groups {Hn(X,A;G)}n∈Z, with
coefficient group G, satisfying:

1. Homotopy : If f ≃ g : (X,A) → (Y, B), then f∗ = g∗ : Hn(Y, B;G) →
Hn(X,A;G).

2. Exactness: For (X,A), there is a long exact sequence: · · · → Hn(X,A;G) →
Hn(X;G) → Hn(A;G)

δ−→ Hn+1(X,A;G) → · · ·

3. Excision: For U ⊂ A with U ⊂ int(A), the inclusion (X\U,A\U) ↪→ (X,A)
induces isomorphisms Hn(X,A;G) ∼= Hn(X \U,A \U;G).

4. Additivity : For X =
⊔
Xi, Hn(X;G) ∼=

⊕
Hn(Xi;G).

5. Dimension: For a point pt, Hn(pt;G) =

{
G n = 0

0 n ̸= 0
.

1.2 Generalized Cohomology Theories
Definition 2. A generalized cohomology theory is a contravariant functor
h∗ : Topop → GrAb, assigning to each pair (X,A) a sequence {hn(X,A)}n∈Z,
satisfying:

1. Homotopy, Exactness, Excision, and Additivity as in Definition 1.

2. Suspension: There is a natural isomorphism hn(X,A) ∼= hn+1(ΣX,ΣA),
where Σ is the reduced suspension.

The groups hn(pt) form a graded ring, the coefficients of h∗.

Theorem 1. Every generalized cohomology theory h∗ is representable by a
spectrum E = {En, σn : ΣEn → En+1}, with hn(X) ∼= [X, En]∗, where [−,−]∗
denotes pointed homotopy classes.

1.3 Unstable and Stable Spectra
Definition 3. A spectrum is a sequence of pointed spaces {En}n∈I, where I ⊆ Z,
with structure maps σn : ΣEn → En+1. It is:

• Unstable if I ⊆ Z≥0.

• Stable if I = Z and each σn is a homotopy equivalence.

Theorem 2. For an unstable spectrum E, the functor X 7→ [X, En]∗ defines a
cohomology theory on spaces of dimension ≤ n. For a stable spectrum E, the
functor hn(X) = [X, En]∗ defines a generalized cohomology theory.
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1.4 Categorical Interpretation
This section explores the categorical foundations of ordinary and generalized
cohomology theories, their associated spectra, and the relationships between
algebraic and topological categories through isomorphisms, analogies, and
instances. We formalize these structures and highlight their categorical nuances
isomorphisms and non-isomorphic relationships, drawing on frameworks like
algebra, homological algebra, and stable homotopy theory.

Definition 4. The category of spectra, denoted Spectra, is the category whose
objects are stable spectra E = {En, σn : ΣEn → En+1}, where En are pointed
spaces and σn are homotopy equivalences. Morphisms are collections of maps
fn : En → Fn compatible with structure maps. The stable homotopy category is
the localization of Spectra at weak equivalences (maps inducing isomorphisms
on homotopy groups).

Definition 5. An ordinary cohomology theory is a functor H∗(−;G) : Topop →
GrAb satisfying the Eilenberg-Steenrod axioms (Definition 1). Categorically,
it is represented by the Eilenberg-MacLane spectrum H, where A ∈ Ab, with
Hn(X;A) ∼= [X,Hn]∗.

Definition 6. A generalized cohomology theory is a functor h∗ : Topop → GrAb
satisfying the axioms of Definition 2. It is representable in Spectra, with hn(X) ∼=
[X, En]∗ for a spectrum E.

Theorem 3 (Brown Representability). Every generalized cohomology theory
h∗ on Top is representable by a spectrum E ∈ Spectra, i.e., there exists E such
that hn(X) ∼= [X, En]∗ for all X ∈ Top.

Theorem 4. The stable homotopy category Spectra is a triangulated category,
with distinguished triangles corresponding to cofiber sequences. It is equivalent
to the category of spectra localized at weak equivalences.

Theorem 5. The functor A 7→ H from Ab to Spectra, mapping an abelian
group to its Eilenberg-MacLane spectrum, is faithful but not full. The induced
functor on ordinary cohomology theories to generalized cohomology theories is
an embedding of categories.

1.4.1 Algebraic and Spectral Correspondences

Mathematics is unified through isomorphisms (categorical equivalences),
analogies (functorial similarities), and instances (specific subcategories or
objects). We present a correspondence table linking Algebra (Ab), Homological
Algebra (Ch(Z)), Ordinary Cohomology, K-Theory, Superalgebra, and Stable
Spectra (Spectra).

Definition 7 (Isomorphism). An isomorphism in a category C is a morphism
f : A → B with an inverse g : B → A such that g ◦ f = idA and f ◦ g = idB. For
categories, an isomorphism is an equivalence, i.e., a functor F : C → D with a
quasi-inverse G : D → C.
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Definition 8 (Analogy). A non-isomorphic analogy is a structural similarity
between objects or categories, captured by functors that preserve some properti-
es but not all, ensuring no categorical equivalence.

Definition 9 (Instance). An instance is a specific object or subcategory within
a broader category, embedded via a faithful functor. A column in the table is an
instance of another if its structures are special cases of the latter’s, maintaining
non-isomorphic distinctions from other categories.

Табл. 1: Algebraic and Spectral Correspondences
Category Object Ring Initial Unit Operations

Algebra Abelian group Ring Z ⊕,⊗
Homological Algebra Chain complex dg-ring Z[0] ⊕,⊗
Superalgebra Z/2Z-graded Ab Z/2Z-graded Ring Z ⊕,⊗
Ordinary Cohomology Cohomology H∗(−;A) Graded ring H∗(−;Z) ⊕,⊗
Complex K-Theory Graded abelian group Graded ring KU ∨,∧
Real K-Theory Graded abelian group Graded ring KO ∨,∧
Stable Spectra Stable spectrum Ring spectrum S ∨,∧

• Isomorphisms: Rare, e.g., Ab ∼= ModZ. Most relationships are non-
isomorphic.

• Analogies: The tensor product ⊗ in Ab and smash product ∧ in Spectra
are analogous, but Ab ̸∼= Spectra due to Spectra’s triangulated structure.

• Instances: KU, KO, and H are instances of Spectra. Superalgebra is an
instance of Ab via the forgetful functor.

Example 1. The functor A 7→ A[0] embeds Ab into Ch(Z), but Ch(Z) ̸∼= Ab
due to differentials. Similarly, H : Ab → Spectra embeds abelian groups as
Eilenberg-MacLane spectra, but Spectra’s stable phenomena (e.g., suspension
equivalences) distinguish it.

Remark 1. Non-isomorphic analogies require careful handling. Conflating ∧

in Spectra with ⊗ in Ab can lead to errors in spectral sequence computations,
as ∧ introduces higher Tor terms.
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1.5 Spectral Sequences
Definition 10. A spectral sequence in an Abelian category A is a collection of
objects {Ep,q

r }r≥1,p,q∈Z, Ep,q
r ∈ A, with differentials:

dp,q
r : Ep,q

r → Ep+ar,q+br
r ,

such that:

1. dr ◦ dr = 0.

2. Ep,q
r+1 = Hp,q(Er, dr) = ker(dp,q

r )/im(dp−ar,q−br
r ).

3. There exists a graded object Hn ∈ A with filtration FpH
p+q ⊆ Hp+q,

such that:
Ep,q∞ ∼= FpH

p+q/Fp−1H
p+q.

The sequence is first-quadrant if Ep,q
r = 0 for p < 0 or q < 0.

Definition 11. The r-th sheet of a spectral sequence is the collection {Ep,q
r }p,q.

The indices (p, q) are coordinates, with p the filtration degree and q the
complementary degree, satisfying total degree n = p + q. The slope of dr :
Ep,q
r → Ep+r,q−r+1

r is −r+1
r

.

Definition 12. A filtered complex in A = Ab is a chain complex (C∗, ∂) with
a filtration · · · ⊆ Fp−1Cn ⊆ FpCn ⊆ Fp+1Cn ⊆ · · ·, compatible with ∂. A
double complex is a bigraded object Cp,q with differentials dh : Cp,q → Cp−1,q,
dv : Cp,q → Cp,q−1, satisfying dhdh = dvdv = dhdv + dvdh = 0. The total
complex is Tot(C)n =

⊕
p+q=n Cp,q.

Theorem 6. A filtered complex (C∗, Fp) induces a spectral sequence with:

Ep,q
0 = FpCp+q/Fp−1Cp+q, Ep,q

1 = Hp+q(FpC/Fp−1C) =⇒ Hp+q(C).

A double complex Cp,q with filtration by p-index induces:

Ep,q
1 = Hv

q(Cp,∗), d1 = H(dh) =⇒ Hp+q(Tot(C)).
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1.5.1 Serre Spectral Sequence

Theorem 7. For a fibration F → E → B with B path-connected, there exists a
first-quadrant spectral sequence:

Ep,q
2 = Hp(B;Hq(F;Z)) =⇒ Hp+q(E;Z),

with dr : E
p,q
r → Ep+r,q−r+1

r .

1.5.2 Atiyah-Hirzebruch Spectral Sequence

Theorem 8. For a generalized cohomology theory h∗ and a CW-complex X,
there exists a spectral sequence:

Ep,q
2 = Hp(X;hq(pt)) =⇒ hp+q(X),

with dr : E
p,q
r → Ep+r,q−r+1

r .

1.5.3 Leray Spectral Sequence

Theorem 9. For a continuous map f : X → Y and a sheaf F on X, there exists
a spectral sequence:

Ep,q
2 = Hp(Y;Rqf∗F) =⇒ Hp+q(X;F),

with dr : E
p,q
r → Ep+r,q−r+1

r .

1.5.4 Eilenberg-Moore Spectral Sequence

Theorem 10. For a pullback diagram with fibration F → E → B, there exists
a spectral sequence:

Ep,q
2 = Torp,q

H∗(B)(H∗(F), R) =⇒ Hp+q(F;R),

with dr : E
p,q
r → Ep−r,q+r−1

r .

1.5.5 Hochschild-Serre Spectral Sequence

Theorem 11. For a group extension 1 → N → G → Q → 1, there exists a
spectral sequence:

Ep,q
2 = Hp(Q;Hq(N;R)) =⇒ Hp+q(G;R),

with dr : E
p,q
r → Ep+r,q−r+1

r .

1.5.6 Spectral Sequence of a Filtered Complex

Theorem 12. For a filtered complex (C∗, Fp), there exists a spectral sequence:

Ep,q
1 = Hp+q(FpC/Fp−1C) =⇒ Hp+q(C),

with dr : E
p,q
r → Ep−r,q+r−1

r .
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1.5.7 Chromatic Spectral Sequence

Theorem 13. For a spectrum X, there exists a spectral sequence:

En,k
1 = πn−k(LK(k)X) =⇒ πn−k(X),

where LK(k)X is the localization at the k-th Morava K-theory, with dr : E
n,k
r →

En+1,k−r
r .

1.5.8 Adams Spectral Sequence

Theorem 14. For a spectrum X and prime p, there exists a spectral sequence:

Es,t
2 = Exts,tA (Hom∗(X,Z/p),Z/p) =⇒ πt−s(X(p)),

where A is the Steenrod algebra, with dr : E
s,t
r → Es+r,t+r−1

r .

1.5.9 Bockstein Spectral Sequence

Theorem 15. For a short exact sequence 0 → R → R ′ → R ′′ → 0 of coefficient
rings, there exists a spectral sequence:

Ep,q
1 = Hp+q(X;R ′′) =⇒ Hp+q(X;R),

with dr : E
p,q
r → Ep+1,q−r

r .
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