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Анотацiя

The purpose of this work is to clarify all topos definitions using type
theory. Not much efforts was done to give all the examples, but one
example, a topos on category of sets, is constructively presented at the
finale.

As this cricial example definition is used in presheaf definition, the
construction of category of sets is a mandatory excercise for any topos li-
brary. We propose here cubicaltt1 version of elementary topos on category
of sets for demonstration of categorical semantics (from logic perspective)
of the fundamental notion of set theory in mathematics.

Other disputed foundations for set theory could be taken as: ZFC,
NBG, ETCS. We will disctinct syntetically: i) category theory; ii) set
theory in univalent foundations; iii) topos theory, grothendieck topos,
elementary topos. For formulation of definitions and theorems only
Martin-Löf Type Theory is requested. The proofs involve cubical type
checker primitives.
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1 Topos Theory
One can admit two topos theory lineages. One lineage takes its roots from
published by Jean Leray in 1945 initial work on sheaves and spectral sequences.
Later this lineage was developed by Henri Paul Cartan, André Weil. The peak
of lineage was settled with works by Jean-Pierre Serre, Alexander Grothendieck,
and Roger Godement.

Second remarkable lineage take its root from William Lawvere and Myles
Tierney. The main contribution is the reformulation of Grothendieck topology
by using subobject classifier.

1.1 Set Theory
Here is given the ∞-groupoid model of sets.

Definition 1. (Mere proposition, PROP). A type P is a mere proposition if for
all x, y : P we have x = y:

isProp(P) =
∏
x,y:P

(x = y).

Definition 2. (0-type). A type A is a 0-type is for all x, y : A and p, q : x =A y
we have p = q.

Definition 3. (1-type). A type A is a 1-type if for all x, y : A and p, q : x =A y
and r, s : p ==A

q, we have r = s.

Definition 4. (A set of elements, SET). A type A is a SET if for all x, y : A
and p, q : x = y, we have p = q:

isSet(A) =
∏
x,y:A

∏
p,q:x=y

(p = q).

Definition 5. data N = Z | S (n : N)

n_grpd (A: U) (n : N) : U = ( a b : A) −> r e c A a b n where
r ec (A: U) ( a b : A) : ( k : N) −> U

= s p l i t { Z −> Path A a b ; S n −> n_grpd (Path A a b) n }

i sContr (A: U) : U = ( x : A) ∗ ( ( y : A) −> Path A x y )
isProp (A: U) : U = n_grpd A Z
i s S e t (A: U) : U = n_grpd A (S Z)
PROP : U = (X:U) ∗ i sProp X
SET : U = (X:U) ∗ i s S e t X

Definition 6. (Π-Contractability). If fiber is set thene path space between any
sections is contractible.
s e tP i (A: U) (B: A −> U) (h : ( x : A) −> i s S e t (B x ) ) ( f g : Pi A B)

(p q : Path ( Pi A B) f g )
: Path (Path ( Pi A B) f g ) p q

2



Definition 7. (Σ-Contractability). If fiber is set then Σ is set.
s e t S i g (A:U) (B: A −> U) ( base : i s S e t A)

( f i b e r : ( x :A) −> i s S e t (B x ) ) : i s S e t ( Sigma A B)

Definition 8. (Unit type, 1). The unit 1 is a type with one element.
data un i t = t t
unitRec (C: U) (x : C) : un i t −> C = s p l i t t t −> x
unit Ind (C: un i t −> U) (x : C t t ) : ( z : un i t ) −> C z

= s p l i t t t −> x

Theorem 1. (Category of Sets, Set). Sets forms a Category. All compositional
theorems proved by using reflection rule of internal language. The proof that
Hom forms a set is taken through Π-contractability.
Set : precategory = ( (Ob,Hom) , id , c , HomSet , L ,R,Q) where

Ob: U = SET
Hom (A B: Ob) : U = A.1 −> B.1
id (A: Ob) : Hom A A = i d fun A.1
c (A B C: Ob) ( f : Hom A B) ( g : Hom B C) : Hom A C

= o A.1 B. 1 C. 1 g f
HomSet (A B: Ob) : i s S e t (Hom A B) = setFun A.1 B. 1 B. 2
L (A B:Ob) ( f :Hom A B) : Path (Hom A B) ( c A A B ( id A) f ) f

= r e f l (Hom A B) f
R (A B:Ob) ( f :Hom A B) : Path (Hom A B) ( c A B B f ( id B) ) f

= r e f l (Hom A B) f
Q (A B C D: Ob) ( f :Hom A B) ( g :Hom B C) (h :Hom C D)

: Path (Hom A D) ( c A C D ( c A B C f g ) h)
( c A B D f ( c B C D g h ) )

= r e f l (Hom A D) ( c A B D f ( c B C D g h ) )
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1.2 Topological Structure
Topos theory extends category theory with notion of topological structure but
reformulated in a categorical way as a category of sheaves on a site or as one
that has cartesian closure and subobject classifier. We give here two definitions.

Definition 9. (Topology). The topological structure on A (or topology) is a
subset S ∈ A with following properties: i) any finite union of subsets of S is
belong to S; ii) any finite intersection of subsets of S is belong to S. Subets of S
are called open sets of family S.
de f =1 (A : U1 ) ( x y : A) := PathP (<_> A) x y
de f i sProp 1 (A : U1 ) := Π ( a b : A) , =1 A a b
de f i s S e t 1 (A : U1 ) := Π ( a b : A) (x y : =1 A a b ) , =1

(=1 A a b) x y
de f Prop := U → 2
de f P (X: U1 ) := X → Prop

de f ∅ (X: U1 ) : P X
:= λ (_: X) (_: U) , f a l s e

de f t o t a l (X: U1 ) : P X
:= λ (_: X) (_: U) , t rue

de f ∈ (X: U1 ) ( e l : X) ( s e t : P X) : U1

:= =1 (U → 2 ) ( s e t e l ) (\ (_: U) , t rue )

de f /∈ (X: U1 ) ( e l : X) ( s e t : P X) : U1

:= =1 (U → 2 ) ( s e t e l ) (\ (_: U) , f a l s e )

de f ⊆ (X: U1 ) (A B: P X)
:= Π ( x : X) , (∈ X x A) × (∈ X x B)

de f ⊆ (X: U1 ) : P X → P X
:= λ (h : P X) , λ ( x : X) (Y: U) , not (h x Y)

de f ∪ (X: U1 ) : P X → P X → P X
:= λ ( h1 : P X) (h2 : P X) , λ ( x : X) (Y: U) , or ( h1 x Y) ( h2 x Y)

de f ∩ (X: U1 ) : P X → P X → P X
:= λ ( h1 : P X) (h2 : P X) , λ ( x : X) (Y: U) , and ( h1 x Y) ( h2 x Y)

For fully functional general topology theorems and Zorn lemma you can refer
to the Coq library 2topology by Daniel Schepler.

2https://github.com/verimath/topology
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1.3 Grothendieck Topos
Grothendieck Topology is a calculus of coverings which generalizes the algebra
of open covers of a topological space, and can exist on much more general
categories. There are three variants of Grothendieck topology definition: i) si-
eves; ii) coverage; iii) covering families. A category have one of these three is
called a Grothendieck site.

Examples: Zariski, flat, étale, Nisnevich topologies.
A sheaf is a presheaf (functor from opposite category to category of sets)

which satisties patching conditions arising from Grothendieck topology, and
applying the associated sheaf functor to preashef forces compliance with these
conditions.

The notion of Grothendieck topos is a geometric flavour of topos theory,
where topos is defined as category of sheaves on a Grothendieck site with
geometric moriphisms as adjoint pairs of functors between topoi, that satisfy
exactness properties. [?]

As this flavour of topos theory uses category of sets as a prerequisite, the
formal construction of set topos is cricual in doing sheaf topos theory.

Definition 10. (Sieves). Sieves are a family of subfunctors

R ⊂ HomC( , U), U ∈ C,

such that following axioms hold: i) (base change) If R ⊂ HomC( , U) is covering
and ϕ : V → U is a morphism of C, then the subfuntor

ϕ−1(R) = {γ :W → V∥ϕ · γ ∈ R}

is covering for V; ii) (local character) Suppose that R, R ′ ⊂ HomC( , U) are
subfunctors and R is covering. If ϕ−1(R ′) is covering for all ϕ : V → U in R,
then R ′ is covering; iii) HomC( , U) is covering for all U ∈ C.
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Definition 11. (Coverage). A coverage is a function assigning to each ObC the
family of morphisms {fi : Ui → U}i∈I called covering families, such that for any
g : V → U exist a covering family {h : Vj → V}j∈J such that each composite

hj ◦ g factors some fi:
Vj Ui

V U

k

h fi

g

de f Co (C: precategory ) ( cod : C.C. ob ) : U
:= Σ (dom: C.C. ob ) , C.C.hom dom cod

de f Delta (C: precategory ) (d : C.C. ob ) : U1

:= Σ ( index : U) , index −> Co C d

de f Coverage (C: precategory ) : U1

:= Σ ( cod : C.C. ob ) ( fam : Delta C cod )
( cove r i ng s : C.C. ob −> Delta C cod −> U) ,
cove r i ng s cod fam

de f s i t e (C: precategory ) : U1

:= Σ (C: precategory ) , Coverage C

Definition 12. (Grothendieck Topology). Suppose category C has all pullbacks.
Since C is small, a pretopology on C consists of families of sets of morphisms

{ϕα : Uα → U}, U ∈ C,

called covering families, such that following axioms hold: i) suppose that ϕα :
Uα → U is a covering family and that ψ : V → U is a morphism of C. Then
the collection V ×U Uα → V is a cvering family for V . ii) If {ϕα : Uα → U}
is covering, and {γα,β : Wα,β → Uα} is covering for all α, then the family of
composites

Wα,β
γα,β−−−→ Uα

ϕα−−→ U

is covering; iii) The family {1 : U→ U} is covering for all U ∈ C.

Definition 13. (Site). Site is a category having either a coverage, grothendieck
topology, or sieves.
s i t e (C: precategory ) : U

= (C: precategory ) ∗ Coverage C

Definition 14. (Presheaf). Presheaf of a category C is a functor from opposite
category to category of sets: Cop → Set.
pre shea f (C: precategory ) : U

= ca t f unc to r ( opCat C) Set

Definition 15. (Presheaf Category, PSh). Presheaf category PSh for a site C is
category were objects are presheaves and morphisms are natural transformations
of presheaf functors.
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Definition 16. (Sheaf). Sheaf is a presheaf on a site. In other words a presheaf
F : Cop → Set such that the cannonical map of inverse limit

F(U) → ←
lim

V→U∈R
F(V)

is an isomorphism for each covering sieve R ⊂ HomC(_, U). Equivalently, all
induced functions

HomC(HomC(_, U), F) → HomC(R, F)

should be bejections.
shea f (C: precategory ) : U

= (S : s i t e C)
∗ pre shea f S . 1

Definition 17. (Sheaf Category, Sh). Sheaf category Sh is a category where
objects are sheaves and morphisms are natural transformation of sheves. Sheaf
category is a full subcategory of category of presheaves PSh.

Definition 18. (Grothendieck Topos). Topos is the category of sheaves Sh(C, J)
on a site C with topology J.

Theorem 2. (Giraud). A category C is a Grothiendieck topos iff it has following
properties: i) has all finite limits; ii) has small disjoint coproducts stable under
pullbacks; iii) any epimorphism is coequalizer; iv) any equivalence relation R→
E is a kernel pair and has a quotient; v) any coequalizer R → E → Q is stably
exact; vi) there is a set of objects that generates C.

Definition 19. (Geometric Morphism). Suppose that C and D are Grothendi-
eck sites. A geometric morphism

f : Sh(C) → Sh(D)

consist of functors f∗ : Sh(C) → Sh(D) and f∗ : Sh(D) → Sh(C) such that f∗
is left adjoint to f∗ and f∗ preserves finite limits. The left adjoint f∗ is called
the inverse image functor, while f∗ is called the direct image. The inverse image
functor f∗ is left and right exact in the sense that it preserves all finite colimits
and limits, respectively.

Definition 20. (Cohesive Topos). A topos E is a cohesive topos over a base
topos S, if there is a geometric morphism (p∗, p∗) : E → S, such that: i) exists
adjunction p! ⊢ p∗ and p! ⊣ p∗; ii) p∗ and p! are full faithful; iii) p! preserves
finite products.

This quadruple defines adjoint triple:∫
⊣ ♭ ⊣ ♯
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1.4 Elementary Topos
Giraud theorem was a synonymical topos definition involved only topos properti-
es but not a site properties. That was step forward on predicative definition. The
other step was made by Lawvere and Tierney, by removing explicit dependance
on categorical model of set theory (as category of set is used in definition of
presheaf). This information was hidden into subobject classifier which was well
defined through categorical pullback and property of being cartesian closed
(having lambda calculus as internal language).

Elementary topos doesn’t involve 2-categorical modeling, so we can construct
set topos without using functors and natural transformations (what we need in
geometrical topos theory flavour). This flavour of topos theory more suited for
logic needs rather that geometry, as its set properties are hidden under the predi-
cative predicative pullback definition of subobject classifier rather that functori-
al notation of presheaf functor. So we can simplify proofs at the homotopy levels,
not to lift everything to 2-categorical model.

Definition 21. (Monomorphism). An morphism f : Y → Z is a monic or mono
if for any object X and every pair of parralel morphisms g1, g2 : X→ Y the

f ◦ g1 = f ◦ g2 → g1 = g2.

More abstractly, f is mono if for any X the Hom(X,_) takes it to an injective
function between hom sets Hom(X, Y) → Hom(X,Z).
mono (P: precategory ) (Y Z : c a r r i e r P) ( f : hom P Y Z ) : U

= (X: c a r r i e r P) ( g1 g2 : hom P X Y)
−> Path (hom P X Z) ( compose P X Y Z g1 f )

( compose P X Y Z g2 f )
−> Path (hom P X Y) g1 g2

Definition 22. (Subobject Classifier[?]). In category C with finite limits, a
subobject classifier is a monomorphism true : 1 → Ω out of terminal object 1,
such that for any mono U → X there is a unique morphism χU : X → Ω and

pullback diagram:
U 1

XΩ Ω

k

true

χU

s u b o b j e c tC l a s s i f i e r (C: precategory ) : U
= ( omega : c a r r i e r C)
∗ ( end : t e rmina l C)
∗ ( trueHom : hom C end . 1 omega )
∗ ( ch i : (V X: c a r r i e r C) ( j : hom C V X) −> hom C X omega )
∗ ( square : (V X: c a r r i e r C) ( j : hom C V X) −> mono C V X j

−> hasPul lback C (omega , ( end . 1 , trueHom ) , (X, ch i V X j ) ) )
∗ ( (V X: c a r r i e r C) ( j : hom C V X) (k : hom C X omega )

−> mono C V X j
−> hasPul lback C (omega , ( end . 1 , trueHom ) , (X, k ) )
−> Path (hom C X omega ) ( ch i V X j ) k )
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Theorem 3. (Category of Sets has Subobject Classifier).

Definition 23. (Cartesian Closed Categories). The category C is called cartesi-
an closed if exists all: i) terminals; ii) products; iii) exponentials. Note that this
definition lacks beta and eta rules which could be found in embedding MLTT .
isCCC (C: precategory ) : U

= (Exp : (A B: c a r r i e r C) −> c a r r i e r C)
∗ (Prod : (A B: c a r r i e r C) −> c a r r i e r C)
∗ (Apply : (A B: c a r r i e r C) −> hom C (Prod (Exp A B) A) B)
∗ (P1 : (A B: c a r r i e r C) −> hom C (Prod A B) A)
∗ (P2 : (A B: c a r r i e r C) −> hom C (Prod A B) B)
∗ (Term : te rmina l C)
∗ uni t

Theorem 4. (Category of Sets is cartesian closed). As you can see from exp
and pro we internalize Π and Σ types as SET instances, the isSet predicates are
provided with contractability. Exitense of terminals is proved by propPi. The
same technique you can find in MLTT embedding.
c a r t e s i anC l o su r e : isCCC Set

= ( expo , prod , appl i , proj1 , proj2 , term , t t ) where
exp (A B: SET) : SET = (A. 1 −> B.1 , setFun A.1 B.1 B. 2 )
pro (A B: SET) : SET = ( prod A.1 B. 1 , s e t S i g A.1 (\ (_ : A. 1 )

−> B. 1 ) A. 2 (\ (_ : A. 1 ) −> B. 2 ) )
expo : (A B: SET) −> SET = \(A B: SET) −> exp A B
prod : (A B: SET) −> SET = \(A B: SET) −> pro A B
app l i : (A B: SET) −> hom Set ( pro ( exp A B) A) B

= \(A B: SET) −> \(x : ( pro ( exp A B)A).1) −> x . 1 x . 2
pro j1 : (A B: SET) −> hom Set ( pro A B) A

= \(A B: SET) (x : ( pro A B) . 1 ) −> x . 1
pro j2 : (A B: SET) −> hom Set ( pro A B) B

= \(A B: SET) (x : ( pro A B) . 1 ) −> x . 2
unitContr ( x : SET) ( f : x . 1 −> uni t ) : i sContr ( x . 1 −> uni t )

= ( f , \( z : x . 1 −> uni t ) −> propPi x . 1 (\ (_: x.1)−>un i t )
(\ ( x : x . 1 ) −> propUnit ) f z )

term : te rmina l Set = ( ( unit , s e tUni t ) ,
\( x : SET) −> unitContr x (\ ( z : x . 1 ) −> t t ) )

Note that rules of cartesian closure forms a type theoretical langage called
lambda calculus.

Definition 24. (Elementary Topos). Topos is a precategory which is cartesian
closed and has subobject classifier.
Topos ( cat : precategory ) : U

= ( c a r t e s i anC l o su r e : isCCC cat )
∗ s u b o b j e c tC l a s s i f i e r cat

Theorem 5. (Topos Definitions). Any Grothendieck topos is an elementary
topos too. The proof is sligthly based on results of Giraud theorem.

Theorem 6. (Category of Sets forms a Topos). There is a cartesian closure
and subobject classifier for a categoty of sets.
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i n t e r n a l : Topos Set
= ( ca r t e s i anC lo su r e , hasSubobject )

Theorem 7. (Freyd). Main theorem of topos theory[?]. For any topos C and
any b : ObC relative category C ↓ b is also a topos. And for any arrow f : a→ b
inverse image functor f∗ : C ↓ b → c ↓ a has left adjoint

∑
f and right adjoin∏

f.

Conclusion
We gave here constructive definition of topology as finite unions and intersecti-
ons of open subsets. Then make this definition categorically compatible by
introducing Grothendieck topology in three different forms: sieves, coverage, and
covering families. Then we defined an elementary topos and introduce category
of sets, and proved that Set is cartesian closed, has object classifier and thus a
topos.

This intro could be considered as a formal introduction to topos theory (at
least of the level of first chapter) and you may evolve this library to your needs or
ask to help porting or developing your application of topos theory to a particular
formal construction.
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